

어류를 이용한 다양한 평가

2023년 11월 29일

Jinwon Seo, Ph.D.

Director of the Natural Environment Research Division

National Institute of Environmental Research

Why Fish ?

- Belong to vertebrate same as human
- Top consumers in many aquatic ecosystem
 ⇒ rely on other organisms to balance the foodweb (phyto-/ zooplankton, macroinvertebrate)
- Excellent bioindicator

⇒ influenced by physical, chemical, & biological factors
 ⇒ representing condition of an aquatic environment

Fisheries Management

Taxonomy

Habitats

Water quality Water quantity

ond/Reservair

Access

Fisheries management depicted as three overlapping circles (from Kohler and Hubert 1993)

Multilevel appoaches

Increasing response time Increasing difficulty of linkage to specific chemicals(impact) Increasing importance

Community

Population

Physiological Biochemical Impact

Community-level Approaches

Case 1. Comparison of fish communities in Ledbetter Creek and Ledbetter Embayment, Kentucky Lake

Case 2. Determination of ecological change in fish for sustainable development in Geum River, Korea

Case 3. Environmental impact assessment on Hwabuk Dam construction, Korea

Case 4. Fishway Monitoring

Fish community analysis

- Fish density, biomass, species richness
- Relative abundance
- Species diversity
- Dominant family and species

815 fish representing 27 species and 9 families

Gener	General characteristics			Zone	Stream	Ecotone	Littoral	
Zone	Channel width (m)	Zone Description	Shading effect	Nutrient (TN, TP)	Families	6	6	7
Stream	4	Well-developed pools and	High	Low	Species	17	18	19
		riffles			Mean nu	mber/bion	nass of fish	per trap
Ecotone	7	Non-measurable water flow,	Medium	Medium	Zone	Stream	Ecotone	Littoral
Littoral	Wide-	No pool or riffle development		W.1	Number	2.2	0.9	1.9
Lattoria	open area	Lentic water, bottom gently sloping region 0 ~ 1.5 m	Low	High	Biomass	6.2 g	1.3 g	2.1 g
		stoping region 0 . 1.3 m						

General characteristics

Habitat selection

Stream Zone 0.8 0.6 Ecotone 0.8 0.6 n 4 0.2 erenîn 0 1 Littoral Zone 0.8 0.6 0.4 0.2 Chipeidae Cyprinidae Centrarchidae Athennidae Percidae

FishFamilies

- Family rankings in the stream appeared to be the opposite of the littoral zone.

Spatial distribution of abundant families of fish Five of the most abundant species

Species	Stream zone	Ecotone	Littoral zone	P value
Guardian	0.72	0	0	< 0.001
darter	(0.33 – 1.95)	(0)	(0)	
Longear	0.285	0	0	< 0.001
sunfish	(0.1 - 1.36)	(0 - 0.09)	(0 - 0.65)	
Central	0.13	0	0	< 0.001
stoneroller	(0 - 2.23)	(0 - 0.2)	(0)	
Threadfin	0	0	0.025	= 0.001
shad	(0)	(0 - 0.05)	(0 - 3.17)	
Bullhead	0	0	0.165	< 0.001
minnow	(0)	(0 - 0.08)	(0 - 1.33)	

Values represent median of mean fish density over months / trap. Numbers in parentheses indicate its range

- The five most abundant species seemed to have habitat selection.

Habitat shift

Hydrologic characteristics in Korea 🕥 코립환경과학음

Annual mean precipitation: 1,130.7mm

Its fluctuation is wide.

(44.5 inches)

64% of annual precipitation

Month

Study Area

Zonation of investigation sites

Materials and Methods

Field Investigation

- Backpack electrofishers are normally used for quantitative sampling in developed countries such as America, Europe, and Australia, and etc.

Analysis

- Fish fauna and community Ecologically valuable Economically valuable e.g., Number of species Relative abundance
 - Relations to flow regime Positive/negative effect on certain species
- Further investigation Examine physical preferences such as water current, depth, and substrate type when fishes are collected

Fish Assemblage

- Total fish fauna in Geum River
 - 20 families 82 species
 - Before 2000 : 20 families 78 species
 - 2002~2004 : 12 families 58 species (5 additional introduced species)

	Up- and Downstream of Yongdam Dam		Up- and Downstream of Daecheong Dam		
	Before 2000	Before 2000 2002~2004		2002~2004	
Fauna	11 family 49 species			11 families 52 species	
Natural monument species	1	0	0	0	
Endangered species	5	4	7	1	
Korean endemic species	22	20	28	16	
Exotic species	0	0 3		6	

Daecheong Dam (completed in 1980)

- Before 2000 Total 20 families 76 species
- 2002 ~ 2004 Total 12 families 52 species

국립화경과학유

Flow Duration Curve

Scenario : Before/After Yongdam
 Dam construction

Increased low flow after Yongdam
 Dam construction

(Unit: 103m3/Day)

Whole Period	Abbreviation	With Youngdam Dam	Without Youngdam Dam
Minimum	Min	369	99
Maximum	Max	132,386	121,661
Percentile 10	P 10	3,793.8	4,897.7
Percentile 90	P 90	441	313.7
Mean	MDF	2,498.1	2,705.5
Median	Med	694	780.5
CV	CV	3.05	2.88
Standard Deviation	STD	7,619.2	7,797.7
Skweness	Skw	3.6	3.5

Relation between change of flow regime and ecological characteristics

Effect of dam discharge

Monthly variation of air/water temperature

Selection of key species

- "<u>Select key species</u>", and compare their distribution between before and after dam construction

Endangered species

Korean endemic species

Habitat for restoration

Habitat investigation for key species S 국립환경과학원

Korean J. Limnol. 42 (4): 495~501 (2009)

Preference of Physical Microhabitat on the 1st-class Endangered Species, Gobiobotia naktongensis inhabiting the Gam Stream, Tributary of the Nakdong River

Seo, Jinwon, Heesung Kim, Hye Suk Yi and Sun A Jeong

11-144 04

Sieve analysis of substrate where the endangered species, Gobiobotia naktongensis was found

					UTIIL: 70
May	gravel	coarse sand	fine sand	silt	clay
St. 3	0.08	90.96	8.16	0	0
St. 5	0	89.60	10.40	0	0
St. 6	0.16	87.04	12.64	0	0
St. 8	0.24	70.20	29.20	0	0
August					
St. 3	2.36	76.60	20.60	0	0
St. 8	0.68	85.92	13.00	0	0

- Velocity : 0.239 ~ 0.585 m/sec
- Depth : $0.14 \sim 0.46$ m
- Substrate : Mostly coarse sand (> 0.425mm)
- They prefer shallow run in sandy bottom

Artificial propagation

- Collect brood fish from the same watersheds
- Induce artificial sex maturation with manipulation of photoperiod and water temperature
- Embryo development and hatching (9 days in black shiner w/ 20 °C)
- Food source for juvenile : Artemia, daphnids
- keep and maintain good water quality

Monitoring of restored fish

국립환경과학원^{+Pride} National Institute of Environmental Research

Investigation

	20	05	2006				
	Before After release release		1st	2nd 3rd		4th	
Black shinner	-	12	1	10	8	-	
Korean aucha perch	-	6	-	1		1	
Family	4	5	3	5	4	6	
Species	15	15	9	16	15	16	

- Total 7 families 20 species including 11 species (55%) of Korean endemic species

Underwater camera

Interview on TV (TJB, 2006.8.3)

Environmental Impact Assessment

Korean J. Limnol. 42 (2) : 260-269 (2009)

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. Seo, Jinwon and Heesung Kim (Korea Institute of Water and Environment (KIWE), Korea Water Resources Corporation, Daejeon 305-730, Korea)

Map of the study sites. Dam is under construction and the grey line indicates expected area submerged.

A list of fish species and number of individuals caught from the sampling sites from 2004 to 2008.

Species	English name			Year			Total	RA	Re
Species	English name	2004	2005	2006	2007	2008	rotai	KA	Ke.
Cyprinidae									
Carassius auratus	Crusian carp	13	3	32	12	5	65	0.63	
Pungtungia herzi	Striped shinner	52	49	44	20	56	221	2.15	
Coreoleuciscus splendidus	Korean shinner	24	81	37	132	142	416	4.05	K
Squalidus gracilis majimae	Korean slender gudgeon	52	112	64	93	173	494	4.81	K
Hemibarbus longirostris	Long nose barbel		27	21	6	7	61	0.59	
Pseudogobio esocinus	Goby minnow				13		13	0.13	
Microphysogobio valuensis	-	70	76	17		17	180	1.75	K
Rhynchocypris axycephalus	Chinese minnow	335	280	142	127	204	1,088	10.60	
Zacco koreanus	Korean chub	1.002	1,716	986	1,343	1,370	6,417	62.53	K
Zacco platypus Cobitidae	Pale chub	1	80	83	93	81	338	3.29	
Misgumus anguillicaudatus	Muddy loach		7	3		6	16	0.16	
Koreocobitis naktongensis	Naktong nose loach		1	3	1		5	0.05	E, K
Cabitis sinensis	Spine loach	5	24	44	37	31	141	1.37	
Niwaella multifasciata Siluridae	Eastern spine loach	14	47	87	36	51	235	2.29	K
Silurus microdorsalis	Slender catfish		1			1	2	0.02	K
Amblycipitidae									
Liobagrus mediadiposalis Odontobutidae	South torrent catfish	30	8	13	5	3	59	0.57	К
Odontobutis platycephala Gobiidae	Korean dark sleeper	75	45	90	94	127	431	4.20	К
Rhinogobius brunneus Belontiidae	Common freshwater goby	45	5	15	5	10	80	0.78	
Macropodus ocellatus	Roundtailed paradise fish		1				1	0.01	
Number of family		7	5	5	6	7	7		
Number of species		13	18	16	15	16	19		
Number of individuals		1,718	2,563	1,681	2,017	2,284	10,263		
K: Korean endemic species, E: Er	idangered species, RA: Relative	abundani	e. Re.: Re	mark					

Community analysis

Stream health assessment

Stream health assessment with index of biotic integrity (IBI). A: Excellent ($36 \sim 40$), B: Good ($26 \sim 35$), C: Fair ($16 \sim 25$), D: Poor (≤ 15).

Index of biotic integrity (IBI) using eight metrics resulted mostly in good and excellent condition in all sites.

Ice harbor type fishway

- Pool type ice-harbor
- 1:20(height : length) slope
- about 1.0 m/s water
 current
- divided into fix spilly axs (2004: 24 sp. ⇒ 2008: 12 sp.)
- Various size distribution between 21 mm (black bullhead) and 550 mm (far eastern catfish)
- Study and acquire fundamental data on swimming ability by species and size
- Maximum of fish movement in 18~21 o'clock (47.8%)
- Related amount of fish movement with water temperature

<u>국리화경</u>과학유

Crane-truck fishway

- found total 7 families 22 species: Anguillidae(1), Cyprinidae(15), Cobitidae(2), Osmeridae(1), Gobiidae(1) Centropomidae(1), Odontobutidae(1),
- Z. platypus is dominant(90% in number)
- found a fish as small as 30 mm TL
- found movement of lentic & benthic sp.
- studied swimming ability by species and size with velocity measurement

Fishway of Estuary barrage

Operate fishway and Navigation lock for fish migration

Fishway

Fish movement program(6~8 times per day)

Monitoring method

Fishway monitoring

Fish locking monitoring(Top: netting, bottom: Acoustic camera)

Population-level Approaches

Case 1. Monitoring of a fluvial bull trout in Arrowrock Reservoir, Idaho, USA

Case 2. Investigation of largemouth bass with a sportfishing tournament in Andong Reservoir, Korea

Common indicators

Survival	Survival related					
 age-specific survival rates year-class strength age structure catch per unit effort Growth 	density or abundance mean age maximum age recruitment indices related					
 mean weight-at-age allometric relationships size structure condition factor proximate body composition 	mean length-at-age specific growth rate liver somatic index incidence of parasites					
Reproduct	ion related					
 age-at-maturity reproductive life span gonad somatic index incidence of atresia 	fecundity sex ratio egg size spawning frequency					

Bull trout as a threatened species

Others in Arrowrock Reservoir

Largemouth bass (introduced species)

- > Purpose : Investigation of introduced species, largemouth bass in Andong Resevoir
- Supported by Korean Sportfishing Association(KSA)
- Examination: growth states (growth rate and condition factor) reproduction states (gonad somatic index, fecundity)

Index of well-being : Condition factor (CF) K = (TW / TL³) X 10⁵

구리화경대하의

Condition factor

Change of gonad somatic index(GSI) by time and sex

Comparison of length-weight relationship

GSI = Gonad weight/Total weight × 100

Fecundity of female largemouth bass <7 May 2006> <11 June 2006> Total Gonad Estimated Total Gonad E

Total length	Total weight	Gonad weight	Estimated eggs	
318	525	30	25,077	
319	475	4	6,820	
328	515	7	5,409	
353	760	49	40,157	
430	1,100	70	47,308	
467	1,770	74	59,239	
492	2,005	137	116,134	

<11 Julie 2000>							
Total weight	Gonad weight	Estimated eggs					
820	46.5	16,740					
1,090	29.1	13,367					
1,150	29.3	17,114					
1,400	40	61,677					
1,985	46	26,279					
2,270	67	44,859					
2,710	113.8	59,440					
	weight 820 1,090 1,150 1,400 1,985 2,270	Total weight Gonad weight 820 46.5 1,090 29.1 1,150 29.3 1,400 40 1,985 46 2,270 67					

Fecundity of Michigan largemouth bass (Laarman and Schneider 1985)

Organism-level Approaches

Case 1. Effect of turbid water on fish ecology in streams and reservoirs in Korea

3

Typical human activity

General point of view

Impact on aquatic ecosystem due to dredging

Respiration Difficulty in fish due to turbid water

Sediment particle can clog fish gill.

Reduction of species diversity by habitat degradation

Continuous dredging in particular area causes avoidance and even less population of some sensitive fish

Effects of turbidity on fish

Physiological

Gill traumaBlood: cortisol

Osmoregulation

Behavioral

Avoidance Territoriality Foraging and predation Habitat

 Increased embeddenness
 Reduction in complexity

Relation with other factors

Histopathological analysis

Tracheal gills of *Siphlonurus chankae* (Ephemeroptera) in control (top) and turbid (bottom) sites

2nd gill lamella of goldfish (*Carassius auratus*) in control (left) and turbid (right) sites (×1000, SEM)

Korean J. Linnot. 41 (4): 431-440 (2008) Effects of Turbid Water on Fish Ecology in Streams and Dam Reservoirs

Seo, Jinwon¹ and Jong Eun Lee¹

Lower-level Approaches

Case 1. Study on effect(s) to fish by burning reeds in constructed wetland, Korea

Case 2. Ecological risk assessment of abandoned mine drainages for managing water quality in streams, Korea

Physiological indicator

국립환경과학원^{+Pride}

catching fish⇒collecting blood⇒performing analysis

· Cortisol, Glucose : related to stress

- little increased but not significantly

AST, ALT : related to enzyme activity in liver

- little increased but not significantly

Na⁺, K⁺, Cl[−]: related to cytosol - little increased except for K⁺ but not significantly

Biochemical indicator

Abandoned mine & Smelting factory drainage

- low pH (high acidity)
- high metal concentration (mostly Fe, Al, Mn)
- Increased sulfate level, suspended solids, & siltation

(Metallothionein (MT) Assay) Liver • Tris-HCI buffer (pH7.4) Homogenate • Centrifuge at 10,000g 10min Cytosol • Saturate with CdCl₂ • Remove the excess of Cd • Centrifuge at 10,000g 10min Supematant

Measurement of Cd

Effects of water quality

Case 1. Influences of seasonal rainfall on water quality near the intake tower of Daechung Reservoir, Korea

5

Case 2. Best management practices for improving water quality in inland fisheries, USA

Case 3. Characteristics of water quality and fish presence and distribution in streams/rivers, Korea

Case 4. Use of Chinese bleak in embryo and sac-fry stages toxicity test with zinc

Case 5. Ecological risk assessment of abandoned mine drainages for management of water quality in streams

Water quality in Limnology

Korean J. Limnol. 34 (4): 327-336 (2001)

*Prec. = Precipitation, Temp = Water temperature, Cond. = Conductivity, Turb. = Turbidity, SD = Secchi depth

Correlation coefficients among the water quality parameters

Temporal variation of water quality parameters

Regression analyses of chlorophyll-a against TN and TP

Water quality in Aquaculture

- 1. Channel catfish industry
- 2. Current management practices
- 3. Environmental concerns
- 4. Best management practices (BMPs)

Mechanism of water quality improvement with physical and chemical management practices

Water quality criteria

Korean J. Limnol. 41 (3) : 283-293 (2008)

Status of Fish Inhabitation and Distribution of Eight Abundant Species in Relation with Water Quality in Streams and Rivers, Ulsan City, Seo, Jinwon, In-Soo Lim, Hojoon Kim and Hye Keun Lee (Korea Institute of Water and Environment, Korea Water Resources Corporation, Daeleon 305-730, Korea)

Water quality criteria

Class	State	рН	DO (mg/L)	BOD (mg/L)	SS (mg/L)	TP (mg/L)	New Contraction of the second
Very Good	- Ç	6.5~8.5	≥7.5	≤1	≤ 25	≤ 0.01	
Good		6.5~8.5	≥ 5.0	≤2	≤ 25	≤ 0.02	DO Usuan Metropolitan City Usuan Metropolitan City
Fairly Good		6.5~8.5	≥ 5.0	≤3	≤ 25	≤ 0.03	More Set and Arrange Set and Arran
Fair		6.5~8.5	≥ 5.0	≤5	≤ 25	≤ 0.05	
Fairly Poor		6.0~8.5	≥ 2.0	≤8	≤ 100	≤ 0.1	BOD Organica Corporation
Poor		6.0~8.5	≥ 2.0	≤10		≤ 0.15	
Very Poor	Ro Ro		< 2.0	> 10		> 0.15	Total phosphorus

Zinc toxicity test

J. ENVIRON. TOXICOL Vol. 20, No. 4, 359 - 363 (2005)

Continuous flow-through system supplying test solution

Embryo vessels suspended in control and test aquaria

Use of Chinese Bleak, Aphyocypris chinensis, in Embryo and Sac-Fry Stages Toxicity Test

A. chinensis(Aphyocypris chinensis)

Fig. 1. Embryo and sac-fry survival of A. chinensis and O. latipes exposed to zinc. Data are given as mean ± SD; n = 3. *Significantly different from the control (p≤0.05).

Concentration (mg/L)	Sac-fry survival (%)	Length (mm/ individual)	Weight (mg/ individual)
Control	88.9 ± 4.9	4.46 ± 0.20	0.15±0.05
0.1	77.8 ± 12.7	$4.33 \pm 0.17^{*}$	0.18 ± 0.06
0.4	72.2 ± 25.5	4.26±0.18*	0.19 ± 0.06
1.4	0*	-	
4.5	0*	-	-
14.5	0*	-	-

Data are expressed as mean \pm SD; $n \ge 3$

*Simificantly different from the control (p < 0.05)

Table 2. Body length and weight of *O* latines exposed to zinc

Concentration (mg/L)	Sac-fry survival (%)	Length (mm/ individual)	Weight (mg/ individual)
Control	93.9±10.5	4.54 ± 0.23	0.30 ± 0.07
0.1	100 ± 0	4.62 ± 0.17	0.29 ± 0.11
0.4	100 ± 0	4.57 ± 0.22	0.29 ± 0.09
1.4	78.2 ± 22.8	4.57 ± 0.22	0.26 ± 0.09
4.5	72.7 ± 9.1	4.56 ± 0.21	0.25 ± 0.08
14.5	0*	-	

Data are expressed as mean + SD: $n \ge 3$ *Significantly different from the control (p < 0.05)

Table 3. Comparison of the sensitivity to zinc (mg/L) in embryo-sac fry toxicity tests of A. chinensis and Q latines

Species	LC ₁₀ (95% confidence	concer	MATC	
11040000000	limits)	NOEC	LOEC	
A. chinensis	0.7 (0.5~0.8)	< 0.1	0.1	< 0.1
O. latipes	4.8 (3.8~6.1)	4.5	14.5	8.1

Environmental hormone test

J. ENVIRON: TOXICOL. Vol. 22. No. 3, 203 ~ 209 (2007)

Test species
 Japanese ricefish
 (Oryzias Latipes)

- Test substance
 Bisphenol A (BPA), Nonylphenol (NP)
- Exposure design (Partial life-cycle test)

Parameter	Test conditons		
Test type	$\label{eq:continuous flow-through system} \\ \begin{aligned} & \text{Control} \\ & \text{Control} \\ & \text{Positive control} (E_a, o.5, ppb) \\ & \text{BPA}(a, ppb) + NP(a, o, ppb) \\ & \text{BPA}(a, o, pb) + NP(a, o, pb) \\ & \text{BPA}(a(o, pb)) + NP(a, ppb) \\ & \text{BPA}(a(o, pb)) + NP(a, ppb) \\ & \text{BPA}(a(o, pb)) + NP(a, ppb) \\ & \text{BPA}(a(o, pb)) + NP(a, pb) \\ & \text{BPA}(a(b, pb)) + NP(a, pb) \\ & BP$		
Duration			
Test concentration (ppb)			
Temperature	22~26°C		
DO	> 60%		
pH	7.0 ± 0.5		
Photoperiod	16 h light : 8 h dark regime		
No. of exposed egg	20 / 3 replicates		
Diet	brine shrimp, Tetramin flake		

Continuous flow-through system

Combination Effect of Bisphenol A and Nonylphenol to Japanese Medaka (*Oryzias latipes*)

Jinwon Seo, Woo-Keun Kim^{1,*} and Sung-Kyu Lee¹

Effect on Embryo

Table 1. Effects of exposure to combination of bisphenol A and nonylphenol on mortality, hatchability, and time to hatch of fertilized eggs of Japanese medaka (Oryzta lattpes)

Treatme <mark>n</mark> t (µg/L)	Mortality (%)	Hatching rate (%)	Time to hatch (day)
Control	11.6 ± 1.4	84.1 ± 3.8	8.7 ± 0.2
BPA (1.2) + NP (1)	11.6 ± 2.9	87.0 ± 2.5	8.2 ± 0.2
BPA (80) + NP (6)	13.0 ± 5.0	82.6 ± 6.7	8.0 ± 0.1
BPA (400) + NP (12)	13.0 ± 5.0	87.0 ± 5.0	8.3 ± 0.1
BPA (2,000) + NP (24)	5.9 ± 1.4	92.6 ± 2.8	8.5 ± 0.3
E ₂ (0.5)	10.1 ± 5.8	88.4 ± 5.2	8.9 ± 0.2
P value	0.815	0.710	0.083

Data expressed as mean ± standard error (n=3)

※ Control should have greater than 80% of survival rate and hatching rate.

Effect on Juvenile

Table 2. Effect of exposure to combination of bisphenol A and nonylphenol on growth of medaka (*Oryzta latipes*) at 60-day post-hatch

Treatment (µg/L)	Total length (mm)	Total weight (mg
Control	21.0 ± 0.5	87.7 ± 6.2
BPA (1.2) + NP (1)	20.8 ± 0.4	81.5 ± 4.5
BPA (80) + NP (6)	21.2 ± 0.4	84.8 ± 4.8
BPA (400) + NP (12)	21.1 ± 0.3	80.1 ± 3.6
BPA (2.000) + NP (24	20.1 ± 0.3	69.4 ± 2.7
E ₂ (0.5)	$15.9 \pm 0.5^{*}$	$42.3 \pm 4.0^{*}$
Pvalue	≤ 0.001	≤ 0.001

Vitellogenin concentration

- Fig. 1. The effects of different mixture concentrations of bisphenol A and nonylphenol on homogenized vitellogenin levels in medaka (*Oryzta lattpes*) exposed for 60-day post-hatch.
- > Concentration-dependent increase

> Exposure to combination groups induced VTG concentrations of male except for the lowest combination.

What is Vitellogenin (VTG)?

- egg yolk precursor protein expressed in the females of nearly oviparous species

Vitellogenin test kit

Case Study of Multilevel Approaches Study of Multilevel Approaches

National Institute of Environmental Research

Site (water T ℃)	M:F	Total Length (TL, cm)	Total Weight (TW,g)	Condition factor (CF)	Gonadosomatic Index (GSI, %)	Hepatosomatic Index (HSI, %)
April Non-polluted (15) Polluted (15)	12:6 3:5	M: 16.1 F: 17.6 M: 17.3 F: 20.8	M: 63.7 F: 93.8 M: 93.9 F: 204.0	M: 1.52 F: 1.67 M: 1.71 F: 1.96	3.62 8.93 2.06 15.71	N/A N/A 2.64 2.51
May Non-polluted (22) Polluted (23)	3:10 1:9	M: 14.7 F: 15.1 (18.7) M: 28.5 F: 24.6	M:48.3 F:68.5 (111) M:3344 F:270.3	M:1.50 F:1.63(1.57) M:1.44 F:1.74	M: 3.99 F: 5.69 (10.01) M: 3.92 F: 13.19	M:1.59 F:2.14 (2.20) M:1.93 F:3.00
June Non-polluted (22) Polluted (24)	3:13 4:17	M: 16.0 F: 15.5 M: 16.6 F: 16.4	M: 69.1 F: 61.4 M: 80.4 F: 84.8	M:1.63 F:1.59 M:1.73 F:1.75	1.91 3.72 1.18 1.29	2.22 1.75 3.35 3.06

Necropsy-Based Fish Population Health Assessment

se of dorsal fin

Enzyme activity by EROD - from fish liver

Comet Parameter Method - Head DNA(%), Tail DNA(%), Tail Length(uM), Tail Extent Moment

Empirical Score Method

The sh	DAT	
1911	DN	4(70)

Approximate percentage DNA in tail	Damage category allocated	Score
0	No	0
1-20	Low	1
21-50	Med	2
51-99	High	3
100	complete	4

Parameter	Upstream (N=12)	Downstream (N=7)	Upstream (N=10)	Downstream (N=10)	
Head DNA (%)	94.10+0.42	84.0=82.11	91.31+0.90	84.15+1.27	
Tail DNA (%)	5.90+0.42	15.92+2.11*	8.69+0.90	15.85+1.27	
Tail extent moment	0.25+0.02	2.05+0.86*	0.56+0.08	1.34+0.15	

Conclusion

2

3

Conservation and restoration of fish ecology

Determination of declined fish species and population

Prevention of factors causing fish decline

- Restriction of unnecessary in-stream constructions : Physical
- e Reduction of point & nonpoint pollution sources : Chemical
- Elimination of illegal fish releases : Biological

Periodic- and systematic monitoring of fish

- High-level : Population- and community-level approaches
- Low-level : Molecular-, biochemical-, organism-level approaches