어류를 이용한 다양한 평가

2023년 11일 29일

Jinwon Seo, Ph.D.

Director of the Natural Environment Research Division
National Institute of Environmental Research

- Belong to vertebrate same as human
- Top consumers in many aquatic ecosystem \Rightarrow rely on other organisms to balance the foodweb (phyto-/ zooplankton, macroinvertebrate)
- Excellent bioindicator
\Rightarrow influenced by physical, chemical, \& biological factors
\Rightarrow representing condition of an aquatic environment

Fisheries Management

Organisms

Fisheries management depicted as three overlapping circles (from Kohler and Hubert 1993)

Multilevel appoaches

Increasing response time
Increasing difficulty of linkage to specific chemicals(impact)
Increasing importance

1 Community-level Approaches

Case 1. Comparison of fish communities in Ledbetter Creek and Ledbetter Embayment, Kentucky Lake

Case 2. Determination of ecological change in fish for sustainable development in Geum River, Korea

Case 3. Environmental impact assessment on Hwabuk Dam construction, Korea

Case 4. Fishway Monitoring

Community
Population
Organism
Physiological
Biochemical
Impact

Fish community analysis

Spatial distribution of abundant families of fish Five of the most abundant species

- Family rankings in the stream appeared to be the opposite of the littoral zone.

Species	Stream zone	Ecotone	Littoral zone	P value
Guardian darter	0.72 $(0.33-1.95)$	0 (0)	0 (0)	<0.001
Longear sunfish	0.285 $(0.1-1.36)$	0 $(0-0.09)$	0 $(0-0.65)$	<0.001
Central stoneroller	0.13 $(0-2.23)$	0 $(0-0.2)$	0 (0)	<0.001
Threadfin shad	0 (0)	0 $(0-0.05)$	0.025 $(0-3.17)$	$=0.001$
Bullhead minnow	0 (0)	0 $(0-0.08)$	0.165 $(0-1.33)$	<0.001

Values represent median of mean fish density over months / trap. Numbers in parentheses indicate its range

- The five most abundant species seemed to have habitat selection.

Habitat shift

Hydrologic characteristics in Korea

回 Precipitation (1966-1996)

Θ Annual mean precipitation: 1,130.7mm
θ Its fluctuation is wide. (44.5 inches)
64\% of annual precipitation

Study Area

국립환경과학원 ${ }^{+ \text {Pride }}$
National Institute of Enwironmental Research

Zonation of investigation sites

Materials and Methods

Field Investigation

- Backpack electrofishers are normally used for quantitative sampling in developed countries such as America, Europe, and Australia, and etc.

Analysis

- Fish fauma and commanamilty Ecologically valuable Economically valuable e.g.- Number of sprecies

Relative abumedlause

- Relations to flow regime Positive/negative effect om certain species
- Further investigation

Examine physical preferences such as water current, depth, and substrate type when fishes are collected

Fish Assemblage

- Total fish fauna in Geum River
- 20 families 82 species
- Before 2000 : 20 families 78 species
- 2002~2004: 12 families 58 species
(5 additional introduced species)

	Up- and Downstream of Yongdam Dam		Up- and Downstream of Daecheong Dam	
	Before 2000	2002~2004	Before 2000	2002~2004
Fauna	11 family 49 species	11 families 42 species	20 families 76 species	11 families 52 species
Natural monument species	1	0	O	0
Endangered species	5	4	7	1
Korean endemic species	22	20	28	16
Exotic species	O	3	1	6

Daecheong Dam (completed in 1980)

- Before 2000 - Total 20 families 76 species
- 2002 ~ 2004 - Total 12 families 52 species

Flow Duration Curve

- Scenario : Before/After Yongdam Dam construction
- Increased low flow after Yongdam Dam construction
(Unit: $10^{3} \mathrm{~m}^{3} /$ Day $)$

Whole Period	Abbreviation	With Youngdam Dam	Without Youngdam Dam
Minimum	Min	369	99
Maximum	Max	132,386	121,661
Percentile 10	P 10	$3,793.8$	$4,897.7$
Percentile 90	P 90	441	313.7
Mean	MDF	$2,498.1$	$2,705.5$
Median	Med	694	780.5
CV	CV	3.05	2.88
Standard Deviation	STD	$7,619.2$	$7,797.7$
Skweness	Skw	3.6	3.5

Effect of dam discharge

Monthly variation of air/water temperature

Reproduction of freshwater goby

Selection of key species

- "Select key species", and compare their distribution between before and after dam construction

Endangered species

Korean endemic species

Habitat for restoration

Habitat investigation for key species

Korean J. Limnol. 42 (4): 495-501 (2009)
Preference of Physical Microhabitat on the $1^{\text {st }}$-class Endangered Species, Gobiobotia naktongensis inhabiting the Gam Stream, Tributary of the Nakdong River

Seo, Jinwon, Heesung Kim, Hye Suk Yi and Sun A Jeong

- Sieve analysis of substrate where the endangered species, Gobiobotia naktongensis was found

May	gravel	coarse sand	fine sand	silt	clay
St. 3	0.08	90.96	8.16	0	0
St. 5	0	89.60	10.40	0	0
St. 6	0.16	87.04	12.64	0	0
St. 8	0.24	70.20	29.20	0	0
August					
St. 3	2.36	76.60	20.60	0	0
St. 8	0.68	85.92	13.00	0	0

Velocity: $0.239 \sim 0.585 \mathrm{~m} / \mathrm{sec}$
圆 Depth : $0.14 \sim 0.46 \mathrm{~m}$
R Substrate : Mostly coarse sand ($>0.425 \mathrm{~mm}$)
They prefer shallow run in sandy bottom

Artificial propagation

- Collect brood fish from the same watersheds
- Induce artificial sex maturation with manipulation of photoperiod and water temperature
- Embryo development and hatching (9 days in black shiner w/ $20{ }^{\circ} \mathrm{C}$)
- Food source for juvenile : Artemia, daphnids
- keep and maintain good water quality

Monitoring of restored fish

Investigation

	2005		2006			
	Before release	After release	1st	2nd	3rd	4th
Black shinner	-	12	1	10	8	-
Korean aucha perch	-	6	-	1		1
Family	4	5	3	5	4	6
Species	15	15	9	16	15	16

- Total 7 families 20 species including 11 species (55\%) of Korean endemic species

Underwater camera

Interview on TV
(TJB, 2006.8.3)

Environmental Impact Assessment

+ Pride

Korean J. Limnol. 42 (2) : 260-269 (2009)

A Study of Fish Community on Up and Downstream of Hwabuk Dam Under Construction in the Upper Wie Stream. Seo, Jinwon land Heesung Kim (Korea Institurte of Water and Environment (KIVE), Korea Water Resources Corporation, Daejeon 305-730, Korea)

Map of the study sites. Dam is urnder coristruction and the grey line indicates expencted area submerg-

A list of fish species and number of individuals caught from the sampling sites from 2004 to 2008.

Specties	English name	Year					Total	RA	Re.
		2004	2005	2006	2007	2008			
Cyprinidae									
Carassius auratus	Crusian carp	13	3	32	12	5	65	0.63	
Pungrungla herzi	Striped shinner	52	4.9	44	20	56	221	2.15	
Coreoleuciscus splendidus	Korean shinner	24	81	37	132	142	416	4.05	K
Squalidus gracilis majimae	Korean slender gudgeon	52	112	64	93	173	49.4	4.81	K
Hemilbarbus longirustris	Long nuse barbel		27	21	6	7	61	0.59	
$P_{\text {seudagabio esocinus }}$	Goby minnow				13		13	0.13	
Microphysogobio yaluensis	-	70	76	17		17	180	1.75	K
Rhynchocypris axycephaius	Chinese minnow	335	280	142	127	204	1,088	10.60	
Zasco koreants	Koreanchub	1,002	1,716	980	1,343	1,370	6,417	62.53	K
Zacco platypus Cobitidae	Pale chub	1	80	83	93	81	338	3.29	
Misgurnus anguillicaudatus	Muddy loach		7	3		6	16	0.16	
Karescobilis naktongensis	Naktorg nose loach		1	3	1		5	0.05	E, K
Cobitis sinensis	Spine loach	5	24	44	37	31	141	1.37	
Nivaella multifasciata Siluridae	Eastern spine loach	14	47	87	36	51	235	2.29	K
Sifurus microdorsalis Amblycipitidae	Slender catish		1			1	2	0.02	K
Liahagrus medtiadiposalis Odontobutidae	South torrent catfish	30	8	13	5	3	59	0.57	K
Odontubutis platycephala Gobiidae	Korean dark sleeper	75	45	90	94	127	431	4.20	K
Rhinogobius brunneus Belontiidae	Common freshwater goby	45	5	15	5	10	80	0.78	
Macrupodus ocellatus	Roundtailed paradise fish		1				1	0.01	
Number of family		7	5	5	6	7	7		
Number of species		13	18	16	15	16	19		
Number of individuals		1,718	2.563	1,681	2.017	2.284	10.263		

[^0]
Community analysis

Dominance index decreased toward lower site, but
diversity and richness indices increased toward lower site

Stream health assessment

Stream health assessment with index of biotic integrity (IBI). A: Excellent (36~40), B: Good (26~35), C: Fair (16~25), D: Poor (≤ 15). Index of biotic integrity (IBI) using eight metrics resulted mostly in good and excellent condition in all sites.

Ice harbor type fishway

- Pool type ice-harbor
- 1:20(height : length) slope
- about $1.0 \mathrm{~m} / \mathbf{s}$ water current
- diץjidadintoifix spillyzays (2004: 24 sp. \Rightarrow 2008: 12 sp .)
- Various size distribution between 21 mm (black bullhead) and 550 mm (far eastern catfish)
- Study and acquire fundamental data on swimming ability by species and size
- Maximum of fish movement in 18~21 o'clock (47.8\%)
- Related amount of fish movement with water temperature

Crane-truck fishway

- found total 7 families 22 species:
 Anguillidae(1), Cyprinidae(15), Cobitidae(2), Osmeridae(1), Gobiidae(1) Centropomidae(1), Odontobutidae(1),
- Z. platypus is dominant(90% in number)
- found a fish as small as 30 mm TL
- found movement of lentic \& benthic sp.
- studied swimming ability by species and size with velocity measurement

Operate fishway and Navigation lock for fish migration

Fishway

※ FISH LOCKING?

Fish movement program($6 \sim 8$ times per day)

Monitoring method

Acouslic System
(ER60, SIMRAD)

Bottom Surface
Fishway monitoring
Fish locking monitoring(Top: netting, bottom: Acoustic camera)

2
 Population-level Approaches

Case 1. Monitoring of a fluvial bull trout in Arrowrock Reservoir, Idaho, USA

Case 2. Investigation of largemouth bass with a sportfishing tournament in Andong Reservoir, Korea

Survival related

- age-specific survival rates
- year-class strength
- age structure
- catch per unit effort
- density or abundance
- mean age
- maximum age
- recruitment indices

Growth related

- mean weight-at-age
- allometric relationships
- size structure
- condition factor
- proximate body composition
- mean length-at-age
- specific growth rate
- liver somatic index
- incidence of parasites

Reproduction related

- age-at-maturity
- reproductive life span
- gonad somatic index
- incidence of atresia
- fecundity
- sex ratio
- egg size
- spawning frequency

Bull trout as a threatened species

Others in Arrowrock Reservoir

Pride

Largemouth bass (introduced species)

> Purpose : Investigation of introduced species, largemouth bass in Andong Resevoir
> Supported by Korean Sportfishing Association(KSA)
> Examination: growth states (growth rate and condition factor)
Index of well-being : reproduction states (gonad somatic index, fecundity)

Condition factor (CF)
$K=\left(T W / L^{3}\right) X 10{ }^{5}$

Length-weight relationship

Condition factor

Change of gonad somatic index(GSI) by time and sex

GSI $=$ Gonad weight/Total weight $\times 100$

Fecundity of female largemouth bass
<7 May 2006>

Total length	Total weight	Gonad weight	Estimated eggs
318	525	30	25,077
319	475	4	6,820
328	515	7	5,409
353	760	49	40,157
430	1,100	70	47,308
467	1,770	74	59,239
492	2,005	137	116,134

Total length	Total weight	Gonad weight	Estimated eggs
385	820	46.5	16,740
411	1,090	29.1	13,367
429	1,150	29.3	17,114
475	1,400	40	61,677
505	1,985	46	26,279
536	2,270	67	44,859
555	2,710	113.8	59,440

Comparison of length-weight relationship

Fecundity of Michigan largemouth bass (Laarman and Schneider 1985)

$\log _{10} \operatorname{egg}=0.4254+3.2857 \log _{10}($ length in cm$)$

Organism-level Approaches

Case 1. Effect of turbid water on fish ecology in streams and reservoirs in Korea

Cause-and Effect

Typical human activity

Bank revetment

Dredging

为欺

회색으로 멍든 강물이 힘겹게 흐른다

Stream rehabilitation

Eco-park construction

Impact on aquatic ecosystem due to dredging

Respiration Difficulty in fish due to turbid water

Sediment particle can clog fish gill.
Reduction of species diversity by habitat degradation

Continuous dredging in particular area causes avoidance and even less population of some sensitive fish

Effects of turbidity on fish

Habitat degradation and decline of fish production

Direct and Indirect

S Gill trauma
8 Blood: cortisol
© Osmoregulation

Relation with other factors

National Institute of Enwironmental Research

Histopathological analysis

Tracheal gills of Siphlonurus chankae (Ephemeroptera) in control (top) and turbid (bottom) sites

Gill of goldfish (Carassius auratus) in control (left) and turbid (right) sites ($\times 200$, SEM)

$2^{\text {nd }}$ gill lamella of goldfish (Carassius auratus) in control (left) and turbid (right) sites ($\times 1000$, SEM)

```
Korean J. Limnoll. 41 (4): 431~440 (2008)
Effects of Turbid VVater on Fish Ecology in Streams
and Dam Reservoirs
```


Lower-level Approaches

Case 1. Study on effect(s) to fish by burning reeds in constructed wetland, Korea

Case 2. Ecological risk assessment of abandoned mine drainages for managing water quality in streams, Korea

Physiological indicator

catching fish \Rightarrow collecting blood \Rightarrow performing analysis

- Cortisol, Glucose : relatea to stress
- little increased but not significantly

AST, ALT : related to enzyme activity in liver - little increased but not significantly
$\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}$: related to cytosol

- little increased except for K^{+}but not significantly

Biochemical indicator

Abandoned mine \& Smelting factory drainage - low pH (high acidity)

- high metal concentration (mostly Fe, Al, Mn)

- Increased sulfate level, suspended solids, \& siltation

(Metallothionein (MT) Assay)

Homogenate

- Centrifuge at $10,000 \mathrm{~g} 10 \mathrm{~min}$

Saturate with CdCl_{2}
Remove the excess of Cd
-Centrifuge at $10,000 \mathrm{~g} 10 \mathrm{~min}$
Supernatant

Effects of water quality

Case 1. Influences of seasonal rainfall on water quality near the intake tower of Daechung Reservoir, Korea

Case 2. Best management practices for improving water quality in inland fisheries, USA

Case 3. Characteristics of water quality and fish presence and distribution in streams/rivers, Korea

Case 4. Use of Chinese bleak in embryo and sac-fry stages toxicity test with zinc

Case 5. Ecological risk assessment of abandoned mine drainages for management of water quality in streams

Water quality in Limnology

Korean J. Limnol. 34 (4): 327~336 (2001)

Temporal variation of water quality parameters

Influences of Seasonal Rainfall on Physical, Chemical and Biological Conditions Near the Intake Tower of Taechung Reservoir

An, Kwang-Guk+ Jinwon Seo and Seok Soon Park

	Prec.	TN	TP	TN/TP	Chl-a	TSS	NVSS	VBS	Temp	pH	DO	Cond.	Turb.
TN	0.61												
TP	0.76	0.58											
$\mathrm{TN} / \mathrm{TP}$	-0.58	-0.05											
Chl-a	0.71	$\text { i. } .3 \text { 汭 }$	081	-0.52									
TSS	0.47	(6.3)	\% \%8\%	-0.69	0.76								
NVSS	-0.11	-0.53	0.05	-0.44	-0.09	0.44	\cdots						
VSS	0.59	0.68	0.86	-0.50	0.89	0.84	-0.12						
Temp	0.60	0.08	0.79	-0.90	0.53	0.58	0.33	0.44					
pH	0.64	0.22	0.79	-0.76	0.46	0.54	0.04	0.58	0.74				
DO	-0.38	0.03	-0.55	0.66	-0.44	-0.44	-0.32	-0.28	-0.87	-0.48			
Cond.	-0.17	-0.48	-0.02	-0.17	-0,45	0.07	0.28	-0.09	0.09	0.36	0.08		
Turb.	0.64	0.65	0.90	-0.58	0.85	0.89	0.06	0.95	0.50	0.65	-0.27	0.02	
SD	-0.72	-0.32	-0.80	0.79	-0.67	-0.78	-0.28	-0.69	-0.65	-0.66	0.37	-0.04	-0.74

${ }^{4}$ Prec. $=$ Precipitation, Temp $=$ Water temperature, Cond. $=$ Conductivity, Turh. $=$ Turbidity, SD $=$ Secchi depth
Correlation coefficients among the water quality parameters

Regression analyses of chlorophyll-a against TN and TP

Water quality in Aquaculture

1. Channel catfish industry
2. Current management practices
3. Environmental concerns
4. Best management practices (BMPs)

JOURNAL OF THE

WORLD AQUACULTURE SOCIETY

Dry-Tilling of Pond Bottoms and Calcium Sulfate Treatment for Water Quality Improvement

```
Jinwon Seo and Claude E. Boyd
```

Deparment of Fisheries and Allied Aquacultures, Aubum University, Alabuma 36849 USA

 ELSEVIER

Aquacultural Enginecring 25 (2001) 83-97
aquacultural engineering
www,elsevier.nl/locate/aqua-online
Effects of bottom soil management practices on water quality improvement in channel catfish

Ictalurus punctatus ponds
Jinwon Seo Claude E. Boyd *
Departmen of Fisheries and Allied Aqwacultures, Auburn Unversaty, Auburn. AL 36849-5419, USA

Mechanism of water quality improvement with physical and chemical management practices

Vol. 32, No. 3 September, 2001

Gypsum $\left(\mathrm{CaSO}_{4}\right)$ Application

of phosphorus

> Precipitation of Calcium Phosphate

Water quality criteria

Korean J. Limmol. 41 (3) $=283 \sim 293$ (2008)

Status of Fish Inhabitation and Distribution of Eight Abundant Species in Relation with VVater Quality in Streams and Rivers, Ulsan City, Seo, Jmwon, In-Soo Lim, Hojoon Kim and Hye Kewn Lee (Korea Institurte of Water and Enviromminent, Norea Water Resources Corporation, Daejeon 305-730, Korea)

1. Total 44 sampling sites
2. Water sampling and analysis

- Period : Mar, May, Aug, \& Oct 2006

3. Fish collection

- Period : Aug 2006
- Gears : cast net and kick net

Range of fish presence vs. water quality with vertical box plot

Water quality criteria

Class	State	$\mathbf{p H}$	DO $(\mathrm{mg} / \mathrm{L})$	BOD $(\mathrm{mg} / \mathrm{L})$	SS $(\mathrm{mg} / \mathrm{L})$	TP $(\mathrm{mg} / \mathrm{L})$
Very Good	Good	$6.5 \sim 8.5$	≥ 7.5	≤ 1	≤ 25	≤ 0.01
Fairly Good	$6.5 \sim 8.5$	≥ 5.0	≤ 2	≤ 25	≤ 0.02	
Fair	$6.5 \sim 8.5$	≥ 5.0	≤ 3	≤ 25	≤ 0.03	
Fairly						
Poor	$6.5 \sim 8.5$	≥ 5.0	≤ 5	≤ 25	≤ 0.05	
Poor	$6.0 \sim 8.5$	≥ 2.0	≤ 8	≤ 100	≤ 0.1	
Very	$6.0 \sim 8.5$	≥ 2.0	≤ 10	≤ 0.15		
Poor		<2.0	>10		>0.15	

Zinc toxicity test

Continuous flow-through system supplying test solution

Embryo vessels suspended in control and test aquaria

Dong Hyuk Yeom ${ }^{\prime \prime}$
4. chinensis(Aphyocypris chinensis)

O. Iatipes(Oryzias latipes)

Fig. 1. Embryo and sac-fry survival of A. chinensis and O.
Fig. 1. Embryo and sac-fiy survival of A. chinensis and O.
Zatipes exposed to zinc. Data are given as mean \pm
SD; $n-3$. *Significantly different fiom the control SD; $n-3$. *Significantly different fiom the control $(p \leq 0.05)$

Table 1. Body length and weight of A. chinensis exposed to

zinc			
Concentration (mg/L)	Sac-fry survival (\%)	Length (mm individual)	Weight (mivial indivial)
Control	88.9 ± 4.9	4.46 ± 0.20	0.15 ± 0.05
0.1	77.8 ± 12.7	$4.33 \pm 0.17^{*}$	0.18 ± 0.06
0.4	72.2 ± 25.5	$4.26 \pm 0.18^{*}$	0.19 ± 0.06
1.4	0^{*}	-	-
4.5	0^{*}	-	-
14.5	0^{*}	-	-

Bata are oxprocosed ax moan $+\mathrm{SD} ; \mathrm{n} \geqslant 3$
*Significantly different from the control($p \leq 0.05$)
Table 2. Body length and weight of O. Latipes exposed to zinc

Concentration (mgL)	Sac-fry sarvival (\%)	Length (mmm/ mdividual)	Weight (mg individual)
Control	93.9 ± 10.5	4.54 ± 0.23	0.30 ± 0.07
0.1	100 ± 0	4.62 ± 0.17	0.29 ± 0.11
0.4	100 ± 0	457 ± 0.22	0.29 ± 0.09
1.4	78.2 ± 22.8	4.57 ± 0.22	0.26 ± 0.09
4.5	72.7 ± 9.1	4.56 ± 0.21	0.25 ± 0.08
14.5	$0 *$	-	

Data are enpresod as mean $t S D ; n \geq 3$
*Significantly different from the control ($0 \leq 0.05$)
Table 3. Comparison of the sensitivity to zinc (mg/L) in embryo-sac firy toxicity tests of A. chinemsis and 0. latipes

Species	$\begin{aligned} & \text { LC } C_{50} \\ & (95 \% \text { confidence } \\ & \text { limita }) \end{aligned}$	Effect concentration		MATC
		NOEC	LOEC	
A. chinensis	$\begin{gathered} 0.7 \\ (0.5-0.8) \end{gathered}$	<0.1	10.1	<0.1
Q. Iaripes	$\begin{gathered} 4.8 \\ (3.8-6.1) \end{gathered}$	45	14.5	8.1

Environmental hormone test

- Test species

Japanese ricefish (Oryzias Latipes)

- Test substance

BisphenolA (BPA), Nonylphenol (NP)

- Exposure design (Partial life-cycle test)

Parameter	Test conditons
Test type	Continuous flow-through system
Duration	Embryos(24-hr post-fertilization) to 60-days post-hatch
Test concentration (ppb)	Control Positive control (E $2,0.5 ~ p p b)$ BPA(1.2 ppb) + NP(1.0 ppb) BPA(80 ppb) + NP(6.0 ppb) BPA(400 ppb) + NP(12 ppb) BPA(2000 ppb) + NP(24 ppb)
22~26 ${ }^{\circ}$	

- Continuous flow-through system

Case Study of Multilevel Approaches

IET	Intagrity Class	Charactoristics
53-55	Excellent	Comparable to pristine conditions, exceptional assernblage of species.
$43-47$	Good	Decreased species tichness, intolerant species in particular; Sensitive speciespresent
35-39	Fair	Intolorant and sensitive spacios absont; skewod trophic structura
$\begin{aligned} & 23 \\ & 29 \end{aligned}$	Poor	Top carnivores and many expected species are absent or rate; ornmivore and tolerant species are peneral.
8-17	Very Poor	Few species and individuals present; tolerant species dominated; diseased fish frequently

Upstream
IBI $=47$
(Good)
Downistream
IBI $=17$
(Verypor)

Site	Discharge $\left(\mathrm{m}^{3} /\right.$ day $)$	Onyzias latipes			Daphnia magna		Lemna gibba		
		1st	2nd	1st	2nd	1st	2nd		
	$521,755 \sim 907,927$	N/E	N/E	N/E	N/E	<6	12		
WTP	$52,930 \sim 60,710$	N/E	N/E	N/E	N/E	<6	<6		

Biological parameters from the fish collected

$\begin{gathered} \text { Site } \\ (\text { water T } \mathrm{C}) \end{gathered}$	M / F	$\begin{aligned} & \text { Total Length } \\ & (\mathrm{TL}, \mathrm{~cm}) \end{aligned}$	Total Weight (TW, g)	Condition factor (CF)	Gonadosomatic Index (GSI, \%)	Hepatosomatic Index (HSI, \%)
```April Non-polluted (15) Polluted (15)```	$\begin{aligned} & 12: 6 \\ & 3: 5 \end{aligned}$	M:16.1   F:17.6   M:17.3   F: 20.8	$\begin{aligned} & \text { M:63.7 } \\ & \text { F:93.8 } \\ & \text { M:93.9 } \\ & \text { F:204.0 } \end{aligned}$	$\begin{aligned} & \text { M:1.52 } \\ & \text { F:1.67 } \\ & M: 1.71 \\ & F: 1.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.62 \\ & 8.93 \\ & 2,06 \\ & 15.71 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 2.64 \\ & 2.51 \\ & \hline \end{aligned}$
May   Non-polluted (22) Polluted (23)	$\begin{aligned} & 3: 10 \\ & 1: 9 \end{aligned}$	$\begin{gathered} \mathrm{M}: 14.7 \\ \mathrm{~F}: 15.1(18.7) \\ \mathrm{M}: 28.5 \\ \mathrm{~F}: 24.6 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}: 48.3 \\ \mathrm{~F}: 68.5(111) \\ \mathrm{M}: 334.4 \\ \mathrm{~F}: 270.3 \\ \hline \end{gathered}$	$\begin{gathered} M: 1.50 \\ \mathrm{~F}: 1.63(1.57) \\ M: 1.44 \\ \mathrm{~F}: 1.74 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}: 3.99 \\ \mathrm{~F}: 5.69(10.01) \\ \mathrm{M}: 3.92 \\ \mathrm{~F}: 13.19 \\ \hline \end{gathered}$	$\begin{gathered} M: 1.59 \\ \mathrm{~F}: 2.14(2.20) \\ M: 1.93 \\ \mathrm{~F}: 3.00 \\ \hline \end{gathered}$
June   Non-polluted (22)   Polluted (24)	$3: 13$ $4: 17$	$\begin{aligned} & M: 16.0 \\ & F: 15.5 \\ & M: 16.6 \\ & F: 16.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M: } 69.1 \\ & \text { F:61.4 } \\ & \text { M: } 80.4 \\ & \text { F:84.8 } \end{aligned}$	$\begin{aligned} & \mathrm{M}: 1.63 \\ & \mathrm{~F}: 1.59 \\ & \mathrm{M}: 1.73 \\ & \mathrm{~F}: 1.75 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.91 \\ & 3.72 \\ & 1.18 \\ & 1.29 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.22 \\ & 1.75 \\ & 3.35 \\ & 3.06 \\ & \hline \end{aligned}$



Cornet Parameter Method

- Head DNA(\%), Tail DNA(\%), Tail Length( $\mu$ M), Tail Extent Moment


## Empirical Score Method

Tail DNA(\%)

Approsimate percentase   DNA intail	Damase category   allocsted	Score   allocated
0	No	0
$1-20$	Low	1
$21-50$	Med	2
$51-99$	High	3
100	complete	4

Reference: Wilson etal., (1998)



Necropsy-Based Fish Population Health Assessment


Enzyme activity by EROD - from fish liver


## Conclusion

## 1 Conservation and restoration of fish ecology

- Determination of declined fish species and population


## 2 Prevention of factors causing fish decline

e Restriction of unnecessary in-stream constructions: Physical

- Reduction of point \& nonpoint pollution sources : Chemical
- Elimination of illegal fish releases : Biological

3 Periodic- and systematic monitoring of fish
O High-level : Population- and community-level approaches

- Low-level : Molecular-, biochemical-, organism-level approaches


[^0]:    K: Korean endemic species, E: Endangered species, RA: Relatlve abundance, Re: Remark

