서울지방 1분 자료를 이용한 강수자료의 환산계수 산정

Adjustment factors of Precipitation using One-minute Data in Seoul

조한성*, 엄명진**, 조원철***, 조주영****

Hanseong Jo, Myoung-Jin Um, Woncheol Cho, Joo Young Cho

요지

본 연구에서는 서울지방 7개 자동기상관측소(AWS: Automatic Weather Station) 에서 관측된 6개년(2000년~2005년) 1분 강수자료를 이용하여 고정시간 연 최대강수량과 임의시간 연 최대강수량간의 관계를 연구하였다. 1분 강수자료를 이용하여 고정시간과 임의지속시간에 대한 연 최대치 강수 재현을 구축-도시화한 후 선형회귀분석에 의해 선정된 계수를 환산계수로 제시하였다. 고정시간 1시간부터 24시간까지의 최대강수량과 임의시간 간격 최대강수량의 비율을 분석한 결과 환산계수는 지속시간이 증가함에 따라 비선형적으로 감소하는 것으로 나타났다. 이러한 관계를 이용하면 정시 강수자료를 보다 정확하게 임의지속시간 강수자료로 환산할 수 있을 것으로 판단된다.

핵심용어 : 1분 강수자료, 고정시간, 임의시간, 환산계수

1. 서 론

오늘날 강수로 인한 피해의 규모는 더욱 대형화 되어가는데 추세로 특히 도시지역의 호우는 단기간에 집중되어 내리는 집중호우적 특성과 계절적 특성의 특성을 띠고 있기 때문에 예측과 예방에 있어 여러 가지 어려움을 내포하고 있다. 이러한 도시지역에서 발생하는 강수의 피해를 줄이고 이·치수 계획에 반영하기 위해서는 강수자료의 분석을 통해 지역특성 및 강수의 특성을 파악하는 것이 중요하다. 강수의 특성을 보다 정확한 파악하기 위해서는 가능한 작은 시간단위로 가지는 강수의 자료가 필요하다. 수문학 뿐 아니라 여러 분야에서도 1분 단위 강수자료의 중요성은 더욱 증가하였으며, 이러한 연구의 필요성이 입증되었다. 본 연구는 이러한 배경을 바탕으로 1분 단위 강수자료를 이용하여 강수자료의 산정 및 요인에 대한 연구를 수행하였다.

* 정회원(주)동일기술공사 수자원부 사원공학석사 E-mail : hydrohs@yahoo.co.kr
** 정회원연세대학교 대학원 토목공학과 박사과정 E-mail : movie21@empal.com
*** 정회원연세대학교 공과대학 사회환경시스템공학부 교수 E-mail : woncheol@yonsei.ac.kr
**** 기상청 관측황사정책과 과장 E-mail : jycho@kma.go.kr
울 부각 되어가는 실정이다. 따라서 시간단위 자료로부터 1분 단위 자료를 얻기 위한 여러 가지 연구가 이뤄지고 있으나 1시간 자료로부터 1분 자료의 분석을 추정해내는 것은 시간 간격이 너무 크게 때문에 오차가 클 확률이 높을 뿐 아니라 지속시간에 있어서 순간적인 강수의 특성을 파악하는 데에는 여러 가지 문제점을 나타내고 있다. 그러나 기상청의 자동기상관측장비(AWS: Automatic Weather Station)에서 관측된 1분 강수자료의 활용으로 보다 정확한 강수특성을 파악할 수 있게 됨에 따라 위와 같은 오류를 없애고, 전 지속시간에 걸친 강수의 특성을 파악할 수 있게 되었다.

도시의 변화와 아울러 기후여건이나 유출의 여건도 많은 변화를 낸다고 있기 때문에 보다 정확한 강수자료를 수집·검토하고, 실제에 가까운 강수의 특성을 파악하는 것이 중요하다. 따라서 시간단위나 10분 단위의 강수자료보다는 분 단위 강수자료 획득의 개발과 이를 이용한 강수자료의 통계적 분석을 통해 강수형태의 정확한 분석과 연구가 이루어져야 한다.

2. 강수자료의 분석

2.1 고정시간 및 임의시간 강수의 정의

본 연구에서 사용한 고정시간이란 기상청에서 발표하는 정시를 의미한다. 현재 기상청에서는 매시 00분에 강수량을 발표하는데 즉, 00시 00분부터 00분마다 누적된 강수량을 01시 00분에 01시 강수량으로 발표하고 있다. 또한, 임의시간이란 수문학적 의미의 강수지속시간으로 그림에 보이는 바와 같이 강수가 지속되는 동안의 임의시간을 의미한다.

고정시간 최대강수량이란 연 강수자료에서 매 정시에 측정된 각각의 강수량을 시간단위로 이동시키면서 쌓은 최대강수량을 의미하고, 임의시간 최대강수량이란 1분 단위 강수자료를 이용하여 1분단위로 이동시키면서 쌓은 최대강수량을 의미한다.

![그림 1. 고정시간-임의시간.](image)

2.2 분석방법

서울지방 7개 지점의 2000년 1월 1일 00시 00분부터 2005년 10월 31일 23시 59분까지의 1분 단위 강수 자료를 이용하여, 1시간부터 24시간에 대해 고정시간 연 최대강수량과 임의시간 연 최대강수량 자료를 구축하였다. 이를 X축에 고정시간 연 최대강수량, Y축에 임의시간 연 최대강수량을 그림 2-5와 같이 도시하여 선형회귀분석에 의한 환산계수를 산정하였다. 또한, 각 시간별 환산계수를 이용하여 그림 2-7과 같이 X축에 고정시간, Y축에 환산계수를 도시한 후 비선형 회귀 분석을 통해 하나의 회귀곡선식을 찾았다.
3. 분석결과

이와 같이 산정된 서울지방 7개 지점에 대한 환산계수와 그 평균값을 표 1에 제시하고, 그림 6~7에 도시하였다. 표 1에서 알 수 있는 바와 같이 서울지점에 대한 수문학적 의미의 임의 지속시간 60분의 연 최대강수량은 고정시간 1시간 간격의 연 최대강수량에 비해 약 1.1배의 값을 갖으며, 고정시간 12시간 이후부터는 이하로 거의 안함을 알 수 있다. 각각의 고정시간에 대한 환산계수는 99%의 높은 결정계수를 나타내었다. 또한, 각 지점별로 고정시간 1시간의 환산계수는 1.045부터 1.306까지 각각 큰 차이를 보였으며, 평균 1.126의 환산계수를 도출하였다. 화관분석을 통한 적합성을 확인한 결과는 표 2.(서울지점)와 같다. 표 2와 표 3의 식들 가운데 1번의 Rational식은 지속시간이 18시간이상으로 길어지면 따라 환산계수가 증가하는 경향을 보여서 합리성이 결여되는 경향을 보이고 있다. 따라서 적정한 분포형으로 볼 수 없다고 할 수 있다. 표 2의 3번 식과 표 3의 8~10번 식들은 결정계수가 0.99 이상이나 지속시간이 길어지면 따라 환산계수가 1.00 이하로 떨어지는 경향을 보이고 있어, 이 식들 역시 합리적이지 못한 것을 알 수 있다. 따라서 서울지점에서는 24시간이상 지속시간이 될 때 영향을 끼치지 않는 시간을 알 수 있다. 따라서 환산계수와 선호도에 따라서 선택적으로 사용할 수 있겠다.
표 1. 서울지방의 지속시간별 환산계수

<table>
<thead>
<tr>
<th>고정시간 (시간)</th>
<th>임의시간 (분)</th>
<th>서울</th>
<th>강남</th>
<th>강동</th>
<th>강서</th>
<th>도봉</th>
<th>동대문</th>
<th>은평</th>
<th>평균 (서울지방)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
<td>1.50</td>
</tr>
</tbody>
</table>

그림 6 과 7은 각각 서울지점과 서울지방의 고정시간에 대한 환산계수를 도시하고, 그 관계를 회귀분석을 통하여 산정한 회귀식의 그래프를 도시하고 있다. 환산계수 회귀곡선은 이상의 결정계수를 보이는 것으로 보아 상당히 적합한 것으로 판단할 수 있다.

표 2. 서울지점의 환산계수에 대한 적합식

<table>
<thead>
<tr>
<th>번호</th>
<th>모델명</th>
<th>회귀식</th>
<th>결정계수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rational Function</td>
<td>$Y=(1.2430759+1.2026724X)/(1+1.2262056X-0.00075398105X^2)$</td>
<td>0.9880</td>
</tr>
<tr>
<td>2</td>
<td>MMF Model</td>
<td>$Y=(0.999576960.62625751+1.163849X+0.5013999)^/0.62625751+X^2)$</td>
<td>0.9866</td>
</tr>
<tr>
<td>3</td>
<td>Weibull Model</td>
<td>$Y=1.169244-0.17226487exp(-0.91714158X)$</td>
<td>0.9859</td>
</tr>
<tr>
<td>4</td>
<td>Logistic Model</td>
<td>$Y=0.0036668*(1+0.43641842X)$</td>
<td>0.9847</td>
</tr>
<tr>
<td>5</td>
<td>Exponential Association (3)</td>
<td>$Y=-0.14029254*(-7.1499522-exp(-0.43894247X))$</td>
<td>0.9836</td>
</tr>
</tbody>
</table>

표 3. 서울지방의 환산계수에 대한 적합식

<table>
<thead>
<tr>
<th>번호</th>
<th>모델명</th>
<th>회귀식</th>
<th>결정계수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rational Function</td>
<td>$Y=(1.9583419+5.6885813X)/(1+5.7938934X-0.0004412583X^2)$</td>
<td>0.9974</td>
</tr>
<tr>
<td>2</td>
<td>MMF Model</td>
<td>$Y=(1.00293360.64412583+1.2052625X-1.8933408)/(0.64412583+X^2)$</td>
<td>0.9965</td>
</tr>
<tr>
<td>3</td>
<td>Weibull Model</td>
<td>$Y=1.1610074-0.8564219*exp(-1.5299055X)$</td>
<td>0.9964</td>
</tr>
<tr>
<td>4</td>
<td>Vapor Pressure Model</td>
<td>$Y=exp(-0.018109886+0.13899563/X+0.005008533ln(X))$</td>
<td>0.9953</td>
</tr>
<tr>
<td>5</td>
<td>Modified Hoerl Model</td>
<td>$Y=0.982052961.1491186(1/X)^{0.12180675}$</td>
<td>0.9951</td>
</tr>
<tr>
<td>6</td>
<td>Logistic Model</td>
<td>$Y=1.005252961.1491186(1/X)^{0.12180675}$</td>
<td>0.9951</td>
</tr>
<tr>
<td>7</td>
<td>Exponential Association (3)</td>
<td>$Y=-0.22036766*(1+0.1956547*exp(-0.6138029X))$</td>
<td>0.9942</td>
</tr>
<tr>
<td>8</td>
<td>Modified Exponential</td>
<td>$Y=0.99603561*e^{0.12180675X}$</td>
<td>0.9932</td>
</tr>
<tr>
<td>9</td>
<td>Root Fit</td>
<td>$Y=0.99603561*1.1295357^{1/X}$</td>
<td>0.9927</td>
</tr>
</tbody>
</table>
본 연구에서는 2000년 이후 6년 동안의 1분 강수자료를 이용하여 고정시간 간격 연 최대강수량과 임의시간 연 최대강수량의 비율을 분석하였다. 서울지방 7개 지점의 고정시간 1시간부터 24시간까지의 최대강수량과 임의시간 간격 최대강수량의 비율을 분석한 결과 환산계수는 각각 지점마다 다른 값을 도출하였다. 서울지점과 서울지방의 고정 1시간에 대한 환산계수는 각각 1.1과 1.126으로 나타났고, 12시간 이전부터는 고정시간과 임의시간의 강수량은 거의 같은 수치를 나타내었다.

4. 결론

본 연구에서는 2000년 이후 6년 동안의 1분 강수자료를 이용하여 고정시간 간격 연 최대강수량과 임의시간 연 최대강수량과의 비율을 분석하였다. 서울지방 7개 지점의 고정시간 1시간부터 24시간까지의 최대강수량과 임의시간 간격 최대강수량의 비율을 분석한 결과 환산계수는 각각 지점마다 다른 값을 도출하였다. 서울지점과 서울지방의 고정 1시간에 대한 환산계수는 각각 1.1과 1.126으로 나타났고, 12시간 이전부터는 고정시간과 임의시간의 강수량은 거의 같은 수치를 나타내었다.

참고문헌