Empirical Mode Decomposition (EMD) and Nonstationary Oscillation Resampling (NSOR): I. their background and model description

Taesam Lee¹, Taha B.M. Ouarda², Byungsoo Kim³

1. Assistant Professor, Department of Civil Engineering, Gyeongsang National University, tae3lee@gnu.ac.kr
2. Professor, Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, taha_ouarda@ete.inrs.ca
3. Postdoctoral Fellow, INRS-ETE, Quebec, (QC), Canada, bskim77@hotmail.com

Long-term nonstationary oscillations (NSOs) are commonly observed in hydrological and climatological data series such as low-frequency climate oscillation indices and precipitation dataset. In this work, we present a stochastic model that captures NSOs within a given variable. The model employs a data-adaptive decomposition method named empirical mode decomposition (EMD). Irregular oscillatory processes in a given variable can be extracted into a finite number of intrinsic mode functions with the EMD approach. A unique data-adaptive algorithm is proposed in the present paper in order to study the future evolution of the NSO components extracted from EMD.

핵심용어: Nonstationary, Oscillation, Resampling, Time Series