

Integration of novel ground-based and SAR-based soil moisture observation systems:

A first step towards automated monitoring of hydrometeorology using Artificial Intelligence

NGUYEN HOANG HAI, Ph.D. Sejong Rain Co., Ltd. In-house Venture of K-Water

CONTENTS

I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

- **1. Introduction and Objectives**
- 1.1. Theoretical background
- **1.2.** Motivation and Objectives
- 2. Integration of CRNP and In-situ Sensors for field-scale SSM & RZSM estimation
- 2.1. Study areas and Datasets
- 2.2. Methodology
- 2.3. General results
- 3. Integration of CRNP and SAR Sentinel-1 for SM estimation over vegetation covers
- **3.1. Study areas and Datasets**
- 3.2. Methodology
- 3.3. General results
- 4. Conclusions

II. POTENTIAL FOR AUTOMATED HYDROMETEOROLOGICAL MONITORING USING AI

- **1. The needs for data assimilation and Artificial Intelligence**
- 1.1. The need for data assimilation
- **1.2.** The need for Artificial Intelligence
- 2. What we are working on
- 2.1. Roadmap
- 2.2. Current project

I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

1. Introduction and Objectives

1.1. Theoretical background

1.1. Theoretical background

Soil moisture measurements

In-situ measurements Point scale

TDR (Time Domain Reflectometry) FDR (Frequency Domain Reflectometry)

- Advantages:
- Higher temporal resolution
- Can provide RZSM at deeper layers
- Disadvantages:
- Point scale measurement (low spatial coverage)
- Require dense network for field-scale monitoring

Cosmic-ray Neutron Probe (CRNP) Intermediate scale Remote sensing measurements Large scale

Airborne Remote Sensing Satellite Remote Sensing

Advantages:

- Large scale (regional, continental, global scale)
 measurement (high spatial coverage)
- Disadvantages:
- Lower temporal resolution
- Only provide shallow SSM
- Coarse spatial resolution cannot provide detailed information for field-scale monitoring

1.1. Theoretical background

Cosmic-ray soil moisture theory

Soil moisture measurement from CRNP

1.2. Motivation

1.2. Motivation

1.2. Objectives

2

3

Improvement of CRNP calibration for field-scale SSM estimation

- Which wetness conditions can produce the most reliable cosmic-ray soil moisture?
- How does vegetation covers affected the calibration accuracy?

Integration of CRNP & In-situ Sensors for field-scale RZSM estimation

- How to combine CRNP and a representative In-situ soil moisture measurements for improving field-scale RZSM estimation?
- How does field-scale merged RZSM vary across vegetation covers and its relationship to parent products quality?

Application of CRNP for fieldscale SAR Sentinel-1 SM retrieval

- How are inter-dependence structures of field-scale radar backscatter, vegetation, and cosmic-ray soil moisture over vegetation covers?
- Can SM be probabilistically retrieved based on the coupling CRNP-SAR? and how does its uncertainties vary across vegetation covers?

I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

2. Integration of CRNP and In-situ Sensors for field-scale SSM and RZSM estimation

2.1. Study areas and Datasets

2.1. Study areas and Datasets

	United				States				South Korea							
COSMOS + Soil Tonzi Ranch (Grassland)				SCAPE Netv	work Kend	dall (Shrubl	and)			SM-F	C (Mixed F	orest)				
Site ID	Location		Location Di		Distance	Soil texture	Site ID	Loca	ation	Distance	Soil texture	Site ID	Loca	tion	Distance	Soil texture
Site ib	Lat	Lat Lon		Son texture				Lat	Lon	r (m)	Son texture	Site ib	Lat	Lon	r (m)	
CRNP	38.432 N	120.966 W	0		CRNP	31.737 N	109. 942 W	0		CRNP	37.292 N	126.966 E	0	Sandy Loam		
Node 401	38.432 N	120.965 W	55	• 0 – 5cm:	Node 1400	31.736 N	109. 942 W	36	• 0 – 5cm: Loam	FDR 01	37.290 N	126.967 E	265	Sandy Loam		
Node 403	38.432 N	120.965 W	81	LOam	Node 1401	31.737 N	109. 943 W	157	• 5 -	FDR 02	37.289 N	126.966 E	258	Loamy Sand		
Node 412	38.431 N	120.967 W	99	• 5 – 20cm:	Node 1402	31.737 N	109. 943 W	102	15cm: Loam	FDR 03	37.291 N	126.967 E	107	Sandy Loam		
Node 415	38.431 N	120.967 W	127	Loam	Node 1403	31.737 N	109. 943 W	78	• 15-	FDR 05	37.291 N	126.964 E	157	Loamy Sand		
Node 416	38.431 N	120.967 W	149	• 20 – 50cm:	Node 1405	31.735 N	109. 941 W	164	30cm:	FDR 06	37.292 N	126.966 E	68	Sandy Loam		
Node 417	38.431 N	120.967 W	155	Clay Loam	Node 1406	31.737 N	109. 944 W	226	200111	FDR 07	37.292 N	126.966 E	0	Sandy Loam		
Node 418	38.431 N	120.968 W	211							FDR 08	37.293 N	126.966 E	113	Loamy Sand		
										FDR 09	37.293 N	126.966 E	94	Loamy Sand		
										FDR 10	37.294 N	126.966 E	251	Loamy Sand		

 I_0 = reference neutron monitor intensity

Flowchart of the merging framework

Validation results

Tonzi Ranch (Grassland)									
Weighting method	Wetness conditions	R	RMSE	Bias	KGE				
	Driest (Q1)	0.91	0.099	0.071	0.43				
Nonlincon	Mod. Dry (Q2)	0.91	0.118	0.090	0.31				
Nonlinear	Mod. Wet (Q3)	0.91	0.067	0.039	0.63				
	Wettest (Q4)	0.92	0.039	-0.016	0.74				

Kendall (Shrubland)								
Weighting method	Wetness conditions	R	RMSE	Bias	KGE			
	Driest (Q1)	0.79	0.033	0.011	0.75			
Nonlinear	Mod. Dry (Q2)	0.79	0.049	0.034	0.63			
Nommear	Mod. Wet (Q3)	0.79	0.036	0.016	0.73			
	Wettest (Q4)	0.79	0.032	0.010	0.75			

	SM-FC (Mixed Forest)								
Weighting method	Wetness conditions	R	RMSE	Bias	KGE				
	Driest (Q1)	0.77	0.099	0.090	0.54				
Nonlineau	Mod. Dry (Q2)	0.77	0.079	0.070	0.61				
Nonlinear	Mod. Wet (Q3)	0.76	0.032	0.009	0.75				
	Wettest (Q4)	0.76	0.031	0.007	0.75				

Results

- Calibration considering wettest conditions mostly generate the best cosmic-ray soil moisture products.
- Relatively dry soil conditions generate the worst performance due to the change in aboveground hydrogen pools, especially the litter layer, which is less dominant under drier conditions.

Surface Soil Moisture (SSM) estimation from CRNP

Sites	Tonzi Ranch (Grassland)		Kendall (S	hrubland)	SM-FC (Mixed Forest)		
SM product	Cosmic ray SM	Weighted SM	Cosmic-ray SM	Weighted SM	Cosmic-ray SM	Weighted SM	
Mean	0.149	0.156	0.125	0.115	0.237	0.230	
CV	0.58	0.47	0.40	0.36	0.19	0.18	
Calibration conditions	Wettes	st (Q4)	Wettes	st (Q4)	Wette	st (Q4)	
N ₀	13	58	3929		1356		
R	0.9	92	0.79		0.76		
RMSE	0.0	39	0.032		0.031		
Bias	-0.0)16	0.0	10	0.007		
KGE	0.7	74	0.7	75	0.75		

• **Highest correlation (R value)** in **grassland**, followed by shrubland and mixed forest. It is due to low aboveground and belowground biomass accumulation grasses, revealing that cosmic-ray neutron signal is not much affected by other hydrogen sources signal variation (mostly vegetation).

- **Highest variation (CV value)** for **both neutron intensity and soil moisture** in **grassland**, followed by shrubland and mixed forest. It is due to low canopy density of grasses cannot intercept much rainfall water, leading to the high temporal variation directly linked to rainfall variation, compared to forest, where rainfall water is mostly intercepted by canopy.
- The KGE values are almost similar over 3 vegetation covers (around 0.75) => similar efficiency of calibration method over vegetated areas

Reference: Nguyen, H. H., Kim, H., & Choi, M. (2017). Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region. *Advances in Water Resources*, *108*, 125-138.

Selection of representative point RZSM using TSA

Temporal Stability Analysis applied for the selected RZSM

Rank of	FDR stations							
small ITS	Tonzi Ranch	Kendall	SM-FC					
1	Node 417	Node 1402	FDR 08					
2	Node 401	Node 1401	FDR 01					
3	Node 418	CRNP	FDR 06					
4	Node 416	Node 1400	FDR 03					
5	Node 412	Node 1406	FDR 10					
6	Node 415	Node 1405	FDR 09					
7	Node 403	Node 1403	CRNP					
8	CRNP		FDR 02					
9			FDR 07					
10			FDR 05					

Station ID

Tonzi Ranch

0.1

0.1

0.2

0.2

RZSM Estimation

		Tonzi I (grass	Ranch land)	Ken (shrut	dall bland)	SM (mixed)	-FC forest)
		P1	P2	P1	P2	P1	P2
Reference RZSM	CV (RZSM)	0.336		0.307		0.161	
	Weight (w)	0.11	0.19	0.37	0.41	0.24	0.06
Merging	Mean w	0.15		0.39		0.15	
framework	R (RZSM)	0.97		0.85		0.88	
	CV (RZSM)	0.331		0.344		0.123	
	T _{opt} (hrs)	1	4.6	100	100	2	1.8
Exponential	Mean T _{opt}	2.8		100		1.9	
Filter	R (RZSM)	0.92		0.64		0.82	
	CV (RZSM)	0.242		0.294		0.095	

- Highest variation (CV) for Reference RZSM in grassland, followed by shrubland and mixed forest. It is due to (1) the highest CV in grassland SSM (mentioned in Chapter 1) and (2) the grasses have higher root water uptake rate compared to forest tree -> consume more water at root zone layer
- Merged RZSM have higher variation than Ex. Filtered RZSM ٠ but close to Reference RZSM variation. Ex. Filter fail to estimate T in Kendall site -> limitation of Ex. Filter
- The weight (w) depends on soil wetness conditions. Dry conditions -> deeper CRNP penetration depth -> more CRNP contribution -> more weight added to CRNP-SSM and vice versa

.10 O.1

0.4 01/01/2016

0.1

0.2

Reference RZSM m³m⁻³)

0.1

0.3

21/03/2016

09/06/2016

Time (hourly)

28/08/2016

16/11/2016

Performance Evaluation

Sites	Products	R	RMSE	Bias	KGE
	Cosmic-ray SM (COS)	0.92	0.062	-0.040	0.23
Tonzi Ranch	Ancillary RZSM (TSL)	0.97	0.033	0.030	0.82
Grassland	Merged RZSM (MERGE)	0.97	0.015	-0.004	0.97
	Ex Filtered RZSM (EF)	0.92	0.041	-0.024	0.68
	Cosmic-ray SM (COS)	0.53	0.055	-0.027	0.41
Kendall	Ancillary RZSM (TSL)	0.79	0.034	0.007	0.76
Shrubland	Merged RZSM (MERGE)	0.86	0.024	Bias RGE -0.040 0.23 0.030 0.82 -0.004 0.97 -0.024 0.68 -0.027 0.41 0.007 0.76 0.0019 0.62 -0.019 0.62 -0.063 0.36 0.000 0.88 -0.003 0.55	
	Ex Filtered RZSM (EF)	0.64	0.042	-0.019	040 0.23 030 0.82 004 0.97 024 0.68 027 0.41 007 0.76 000 0.76 019 0.62 0063 0.36 0000 0.88 003 0.55
	Cosmic-ray SM (COS)	0.81	0.027	-0.006	0.73
SM-FC	Ancillary RZSM (TSL)	0.86	0.067	-0.063	0.36
(SiviFC) Mixed Forest	Merged RZSM (MERGE)	0.88	0.0330.0300.820.015-0.0040.970.041-0.0240.680.055-0.0270.410.0340.0070.760.0240.0000.760.042-0.0190.620.027-0.0630.360.067-0.0630.360.0180.0000.55	0.88	
	Ex Filtered RZSM (EF)	0.82	0.024	2 -0.040 0.23 3 0.030 0.82 5 -0.004 0.97 1 -0.024 0.68 5 -0.027 0.41 4 0.007 0.76 4 0.000 0.76 2 -0.019 0.62 7 -0.063 0.36 8 0.000 0.88 4 -0.003 0.55	0.55

 For all three vegetation covers, the merged RZSM outperformed 2 parent products (Cosmic-ray SM and Time stable RZSM) and Exponentially Filtered RZSM -> robust for application in most vegetation covers

• Lower performance of Cosmic-ray SM and Time stable location (TSL) for RZSM -> standalone use of CRNP and point-based TSL cannot fully represent field-scale RZSM.

 Lower performance of Exponential Filter -> limitation because 1 parameter (T_{opt}) cannot fully interpret the physical processes controlling infiltrated water

Reference: Nguyen, H. H., Jeong, J., & Choi, M. (2019). Extension of cosmic-ray neutron probe measurement depth for improving field scale root-zone soil moisture estimation by coupling with representative in-situ sensors. *Journal of Hydrology*, *571*, 679-696.

- The quality of merged RZSM depends on the quality of each parent product against reference RZSM
- More weights were considered to added to a better product (higher R and SDV-Normalized SD close to 1)

I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

3. Integration of CRNP and SAR Sentinel-1 for SM estimation over vegetation covers

3.1. Study areas and Datasets

Field-scale ground-based soil moisture dataset

3.1. Study areas and Datasets

SAR dataset

SAR Sentinel-1 Backscattering Coefficient (σ°)

SENTINEL-1

Sensor Type	Active Microwave (SAR)
Band	C-band (5.4 GHz)
Duration	2014 - present
Temporal Res.	6 – 12 days
Spatial Res.	20 m
Selected Specification	VV + VH polarization, Level1 GRD, IW mode
Target Spatial Res.	500 m
Target Period	1 year (2017)

Multivariate dependence modelling using Vine copula

Vine Copula Allow modelling high-dimensional multivariate dependence structures (for more than 2 variables) Enable the flexibility in choosing copulas **D-Vine Copula Quantile Regression** (DVQR) Fitting ACs to each bivariate copula: * $C_{VVVH}(u_{VV}, u_{VH}) = \varphi^{-1}[\varphi(u_{VV}) + \varphi(u_{VH})]$ $C_{VHM_{\mathcal{V}}}(u_{\mathcal{V}H}, u_{\mathcal{M}_{\mathcal{V}}}) = \varphi^{-1}[\varphi(u_{\mathcal{V}H}) + \varphi(u_{\mathcal{M}_{\mathcal{V}}})]$ $C_{VVM_{V}|VH}(u_{VH}, u_{M_{V}}) = \varphi^{-1}[\varphi(H_{VV|VH}) + \varphi(H_{M_{V}|VH})]$ Computing conditional copula: * $H_{VV|VH}(u_{VV}|u_{VH}) = \frac{\partial C_{VVVH}(u_{VV}, u_{VH})}{\partial u_{VH}}$ $H_{M\nu|VH}(u_{M\nu}|u_{VH}) = \frac{\partial C_{VHM\nu}(u_{VH}, u_{M\nu})}{\partial u_{VH}}$ $H_{M\nu|VV,VH}(u_{M\nu}|u_{VV},u_{VH}) = \frac{\partial C_{VVM\nu|VH}(H_{VV|VH},H_{M\nu|VH})}{\partial H_{VV|VH}}$ Backward simulation of soil moisture (Mv): * $x_{M\nu} = F_{M\nu}^{-1}(u_{M\nu}) = F_{M\nu}^{-1} \Big(H_{M\nu|VH}^{-1} \Big(H_{M\nu|VV,VH}^{-1}(q|u_{VV}, u_{VH}) \Big) \Big)$

Overview of variables

Interdependences of variables

the highest correlation values of three dependence pairs were generally obtained in the two herbaceous areas (CRO and GRA) compared to the woody regions (OSH, ENF and DBF)

correlation values decreased with increasing vegetation density

٠

-> attenuation effects of dense and complex vegetation on radar backscatter signal (C-band SAR signal cannot penetrate the densely forested canopies)

- Interdependence structures among variables can be well captured and simulated by the D-Vine Copula
- The interdependence structures over most of the vegetation covers are nonlinear and asymmetric

2

2

2

2

2

SAR Sentinel-1 SSM retrieval over different vegetation covers

Intercomparison of D-Vine Copula Quantile Regression (DVQR) and Multi-Linear Quantile Regression (MLQR)

• Relative average deviation amplitude:

$$RDA = \frac{1}{N} \sum_{i=1}^{N} \left| \left(\frac{1}{2} \left(q_i^u + q_i^l \right) - M v_i \right) \right| M v_i \right|$$

where N is the sample size, q_i^u and q_i^l are upper (q = 95%) and lower (q = 5%) prediction bounds at the ith observation, respectively; Mv_i is the ith observed CRSM anomaly.

- Higher τ and R, lower RMSE, Bias and RDA can be regarded as a superior product
- The superior performances obtained with the DVQR compared with the MLQR considering all evaluation metrics in most VCs -> robustness of the DVQR for capturing highly nonlinear dependence structures among variables
- Over VCs, superior performance was generally obtained at lowcanopy herbaceous regions, especially grasslands and croplands, according to the high correlations between each pairs of variables.

SAR Sentinel-1 SSM retrieval at each COSMOS site

Manatation			Deterministi	ic evaluation	า	Probabilistic evaluation	
covers	Sites	τ	R	RMSE (m ³ m ⁻³)	Bias (m ³ m ⁻³)	RDA	
_	NF3	0.56	0.69	0.050	0.004	0.133	
CRO	YIM	0.66	0.82	0.028	-0.005	0.084	
_	YIS	0.53	0.69	0.041	-0.003	0.124	
	FP	0.36	0.66	0.054	-0.031	0.272	
GRA	FWF	0.57	0.68	0.074	0.048	0.488	
	MSC	0.22	0.50	0.028	-0.006	0.227	
	DCU	0.46	0.73	0.039	0.004	1.447	
OSH	LSC	0.41	0.52	0.038	-0.021	0.702	
	TWR	0.32	0.44	0.030	-0.002	0.773	
	FPP	0.31	0.22	0.092	-0.021	0.495	
ENF	MFG	0.33	0.40	0.043	-0.021	0.270	
	DF	0.34	0.46	0.354	0.227	1.803	
_	HVF	0.10	0.27	0.076	0.001	0.158	
DBF	MZ	0.42	0.55	0.047	-0.011	0.168	
	SH	0.07	0.18	0.027	-0.006	0.109	

Reference: Nguyen, H. H., Cho, S., Jeong, J., & Choi, M. (2021). A D-vine copula quantile regression approach for soil moisture retrieval from dual polarimetric SAR Sentinel-1 over vegetated terrains. *Remote Sensing of Environment*, 255, 112283.

I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

4. Conclusions

4. Conclusions

- Calibration using wettest conditions can generate reasonable cosmic-ray soil moisture products.
- The merging framework combined CRNP and in-situ soil moisture measurements by providing the weight considering the CRNP penetration depth. When the CRNP penetration depth is shallower than RZSM depth, less weight is given to CRNP and more weight is provided to representative point measurement.
- The merging framework outperformed 2 original products and exponential filter, indicating that independent uses of both CRNP and in-situ sensor cannot fully represent field-scale RZSM.
- In root-zone layer, vegetation type and root water uptake is the major factors controlling the temporal variation of merged RZSM, which can be partly revealed through the merging framework procedure
- Radar backscatter is more sensitive to soil moisture over low-canopy herbaceous areas rather than dense canopy woodland areas, leading to superior performances of SAR-based soil moisture retrieval at low-canopy regions
- Vegetation is the major factor controlling spatio-temporal variation of soil moisture -> needs to be considered carefully before integrating different soil moisture observation systems

II. POTENTIAL FOR AUTOMATED HYDROMETEOROLOGICAL MONITORING USING AI

1. The needs for data assimilation and Artificial Intelligence

1.1. The need for data assimilation

Pros and Cons of precipitation observation systems

Rain gauges

Advantages:

- High temporal resolution (1 min.)
- Most accurate observation
- Disadvantages:
- Point-scale measurement (low spatial coverage)
- Errors due to external sources (winds, high rainfall intensity...)

Weather radars

- Advantages:
- High temporal resolution (5-15 min.)
- Good spatial coverage
- Disadvantages:
- High errors
- Require rain gauges data for calibration and correction

Satellite remote sensing

Advantages:

- Large scale observation (high spatial coverage)
- Disadvantages:
- Lower temporal resolution (30 min.-1 day)
- Coarse spatial resolution
- Require rain gauge network and radar data for downscaling and correction

1.2. The need for Artificial Intelligence

Automated monitoring system for precipitation data

II. POTENTIAL FOR AUTOMATED HYDROMETEOROLOGICAL MONITORING USING AI

2. What we are working on

2.1. Roadmap

Roadmap for data assimilation of precipitation observation systems

2.2. Current work

Development of a smart rain gauge

Smart Rain Gauge

THANK YOU FOR YOUR ATTENTION!

