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I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

1. Introduction and Objectives



1.1. Theoretical background

Applications

Rainfall & 
Flood 

Forecasting

Irrigation 
Scheduling

Drought 
Monitoring

Sand Dust 
Outbreaks 

Risk 
Assessment

Soil profile

Surface layer
(~ 5 cm depth)

Root-zone layer
( up to 100 cm depth)

Surface soil 
moisture (SSM)

Root-zone soil 
moisture (RZSM)

Soil moisture is the quantity of 
water contained in the soil



FDR (Frequency Domain 
Reflectometry)

TDR (Time Domain 
Reflectometry)

In-situ measurements
Point scale

Remote sensing measurements
Large scale

Airborne Remote 
Sensing

Satellite Remote 
Sensing

Scale mismatch

❖ Advantages:
• Higher temporal resolution
• Can provide RZSM at deeper layers
❖ Disadvantages:
• Point scale measurement (low spatial 

coverage)
• Require dense network for field-scale 

monitoring

❖ Advantages:
• Large scale (regional, continental, global scale) 

measurement (high spatial coverage)
❖ Disadvantages:
• Lower temporal resolution
• Only provide shallow SSM
• Coarse spatial resolution cannot provide 

detailed information for field-scale monitoring

1.1. Theoretical background

Cosmic-ray Neutron Probe 
(CRNP)

Intermediate scale



1.1. Theoretical background

Holding the 
potential for 
measuring 
both field-
scale SSM 
and RZSM



1.2. Motivation



1.2. Motivation

Advanced Scatterometer (ASCAT) Advanced Microwave Scanning Radiometer 2 
(AMSR2)

Soil Moisture Active Passive (SMAP) Soil Moisture Ocean Salinity (SMOS)

Spatial Resolution: 25 km Spatial Resolution: 25 km

Spatial Resolution: 40 kmSpatial Resolution: 36 km

Synthetic Aperture Radar 
(SAR) Sentinel-1

• Only provide backscattering
measurements

❖ Advantages:
• High spatial resolution: 20 m
• Field-scale to catchment scale

measurement
• Medium temporal resolution: 6-12

days
• Sensitive to soil moisture
❖ Disadvantages:
• Require retrieval methods to

generate soil moisture products
• Highly affected by vegetation

Footprint Diameter ~ 500 m

CRNP

Too coarse
resolution

~ Can aggregate to 500 m

Can CRNP be an useful tool for SAR Sentinel-1 soil 
moisture retrievals across different vegetation conditions?

Can we characterize the interactions of (SAR 
backscattering – vegetation – cosmic-ray soil moisture) at 
field-scale through modelling their interdependences?

Vegetation

Dependence

Dependence



1.2. Objectives

• Which wetness conditions can produce the most reliable 
cosmic-ray soil moisture?

• How does vegetation covers affected the calibration accuracy?

Improvement of CRNP 
calibration for field-scale 

SSM estimation

• How to combine CRNP and a representative In-situ soil 
moisture measurements for improving field-scale RZSM 
estimation? 

• How does field-scale merged RZSM vary across vegetation 
covers and its relationship to parent products quality?

Integration of CRNP & In-situ 
Sensors for field-scale RZSM 

estimation

• How are inter-dependence structures of field-scale radar 
backscatter, vegetation, and cosmic-ray soil moisture over 
vegetation covers?

• Can SM be probabilistically retrieved based on the coupling 
CRNP-SAR? and how does its uncertainties vary across 
vegetation covers?

Application of CRNP for field-
scale SAR Sentinel-1 SM 

retrieval

1

2

3



I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

2. Integration of CRNP and In-situ Sensors for field-scale SSM and RZSM estimation 



2.1. Study areas and Datasets

Grassland Shrubland Mixed Forest

SM-FC

In-situ soil moisture 
(SOILSCAPE Network)
• hourly volumetric 

soil moisture
❖ Tonzi Ranch:
• 7 stations
• 3 measurement 

depths: 5, 20, 50 
cm

• Study period: 1 
year (2016)

❖ Kendall:
• 6 stations
• 3 measurement 

depths: 5, 15, 30 
cm

• Study period: 1 
year (2016)

Tonzi Ranch & 
Kendall

Cosmic-ray Neutron 
Probe (COSMOS 

Network)
• hourly neutron 

intensity
• Study period: 1 

year (2016)

Cosmic-ray Neutron 
Probe (CRNP)

• hourly neutron 
intensity

• Study period: 
(Sep. – Nov. 
2015) & (Apr. –
Jun. 2016)

In-situ soil moisture
Frequency Domain 

Reflectometry (FDR) 
Network

• hourly 
volumetric soil 
moisture

• 9 stations 
• 3 measurement 

depths: 10, 20, 
30 cm

• Study period: 
(Sep. – Nov. 
2015) & (Apr. –
Jun. 2016)



2.1. Study areas and Datasets

Site ID
Location

Distance 
r (m)

Soil texture
Lat Lon

CRNP 37.292 N 126.966 E 0 Sandy Loam

FDR 01 37.290 N 126.967 E 265 Sandy Loam

FDR 02 37.289 N 126.966 E 258 Loamy Sand

FDR 03 37.291 N 126.967 E 107 Sandy Loam

FDR 05 37.291 N 126.964 E 157 Loamy Sand

FDR 06 37.292 N 126.966 E 68 Sandy Loam

FDR 07 37.292 N 126.966 E 0 Sandy Loam

FDR 08 37.293 N 126.966 E 113 Loamy Sand

FDR 09 37.293 N 126.966 E 94 Loamy Sand

FDR 10 37.294 N 126.966 E 251 Loamy Sand

Site ID
Location

Distance 
r (m)

Soil texture
Lat Lon

CRNP 31.737 N 109. 942 W 0

• 0 – 5cm: 
Loam

• 5 –
15cm: 
Loam

• 15 –
30cm: 
Loam

Node 1400 31.736 N 109. 942 W 36

Node 1401 31.737 N 109. 943 W 157

Node 1402 31.737 N 109. 943 W 102

Node 1403 31.737 N 109. 943 W 78

Node 1405 31.735 N 109. 941 W 164

Node 1406 31.737 N 109. 944 W 226

Site ID
Location

Distance 
r (m)

Soil texture
Lat Lon

CRNP 38.432 N 120.966 W 0

• 0 – 5cm:
Loam

• 5 –
20cm: 
Loam

• 20 –
50cm: 
Clay 
Loam

Node 401 38.432 N 120.965 W 55

Node 403 38.432 N 120.965 W 81

Node 412 38.431 N 120.967 W 99

Node 415 38.431 N 120.967 W 127

Node 416 38.431 N 120.967 W 149

Node 417 38.431 N 120.967 W 155

Node 418 38.431 N 120.968 W 211

SM-FC (Mixed Forest)Tonzi Ranch (Grassland) Kendall (Shrubland)

United States South Korea

COSMOS + SoilSCAPE Network



2.2. Methodology

Correction factor for atmospheric pressure (fp):

P = atmospheric pressure at specific site (mbar)
Pref = reference atmospheric pressure (mbar)
β = atmospheric attenuation coefficient (mbar-1) (~ 0.0077 mbar-1)

( )expp reff P P =  −
 

Correction for Atmospheric Pressure

Correction factor for atmospheric water vapor (fwv):

ρv0 = absolute humidity at the time measurement (g.m-3)
ρv0

ref = reference absolute humidity (g.m-3) (~ 0 g.m-3 for dry air)

( )0 01 0.0054 ref

wv v vf = +  −

Correction for Atmospheric Water Vapor

Correction factor for incoming neutron intensity (fi):

Im = neutron monitor intensity at time of measurement
I0 = reference neutron monitor intensity

0

m

i

I
f

I
=

Correction for Incoming Neutron Intensity
Correction for Neutron Intensity:

Nraw = raw neutron intensity measured at CRNP
Ncorr = corrected neutron intensity 

Correction for Neutron Intensity

Variation of Cosmic-ray 
Neutron Intensity

• Vary with altitude -> 
change in barometric 
pressure

• Vary with atmospheric 
water vapor (atmospheric 
moist contributes to 
hydrogen sources that is 
sensitive to neutrons)

• Vary with latitude and 
longitude (geomagnetic 
cutoff rigidity)

.
.

p wv

corr raw

i

f f
N N

f
=

Variation 
with 

atmospheric 
water vapor

Variation 
with 

altitude 
(pressure)



2.2. Methodology

In-situ point 
measurements

Weighted 
average SM

 
 
  = − 
 

− 
 

0
2

1

0

weighted bd

corr

a
a

N
a

N

Traditional Calibration

Pearson Correlation 
(R)

Root-Mean-Square Error 
(RMSE)

Bias = − − +  − +  −2 2 21 ( 1) ( 1) ( 1)KGE R

• Euclidian Distance:

• KGE:

= − +  − +  −2 2 2( 1) ( 1) ( 1)ED R

 = − +  − +  −2 2 2.[s ( 1)] [s ( 1)] [s ( 1)]RED R

= −1KGE ED

R = Correlation
ε = μ(θe) / μ(θi) = bias ratio
γ = (σ(θe)/μ(θe)) / (σ(θi)/μ(θi)) = 
variability ratio

KGE range from –∞ to 1, where 1 
corresponding to a perfect fit

Driest

Moderate dry

Moderate wet

Wettest

Separation of wetness levels 
based on soil moisture Quartiles

Q1 Q2 Q3 Q4

Kling-Gupta Efficiency 
(KGE)

Weighting In-situ 
measurements

(using nonlinear 
methods)



2.2. Methodology

Temporal Stability Analysis

where θij is the soil moisture observed at location i (i = 1,…,N) at the time j (j

= 1,…,M); the mean of each sampling j:

Relative Difference (RDij)
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j

 
=

= 
1

1 N

j ij
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Index of Temporal Stability (ITS)
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1
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i ij
j
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Mean of RDij (MRDi) Standard Deviation of RDij (SDRDi)

( )
=

= −
−

2

1

1

1

M

i ij i
j

SDRD RD MRD
M

The 
representative 
location have 
ITS value close 

to zero

• In the network, there has a location that its soil 
moisture measurement is invariant during time 
(time stable location)

• Soil moisture from a point-based time stable 
location can represent field-average soil moisture 
within network (representative location)



2.2. Methodology

Main framework

Reference method

Parent product 1 Parent product 2

Described 
in Chapter 1

❖ Separate study period into 2 periods (P1 and 
P2):

• Using P1 for calibration, then validated on P2
• Using P2 for calibration, then validated on P1

Cross-validation

 
 
  = − 
 

− 
 

0
2

1

0

total bd

corr

a
a

N
a
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Traditional Calibration

  = total vwc biomass

CRNP SM In-situ SM

( ) −
= + −. 1 .merged CRNP in situRZSM w SSM w RZSM

Capture



2.2. Methodology

Pearson Correlation 
(R)

Root-Mean-Square Error 
(RMSE)

Bias
Kling-Gupta Efficiency 

(KGE)

Taylor Diagram

= + −2 2' 1 2. .E SDV SDV R

( )
( )






=


e

r

SDV

The relationship of 3 metrics: 
Centered RMSD (E’)
Correlation (R)
Normalized SD (SDV, ratio of 
estimated and reference SD)

Exponential Filter

• The recursive formulation of the original 
exponential filter:

• Gain Ki:

Ki range from 0 to 1
K1 and SWI2(1) were set to 1 and SWI1(1), 
respectively
T = characteristic time length (obtained by 
calibration)

Main framework

( ) ( ) ( ) ( )− −
 
 = + − 22 2 1 1 1i i i i iSWI t SWI t K SWI t SWI t

−

− −

=
+ − −

1

1 1exp( ( ) / )
i

i
i i i

K
K

K t t T

❖ Linear combination of forecasts:

• The weight (w):

σ1, σ2, and ρ are SDs of error datasets and 
the correlation of those 2 error datasets, 
respectively

❖ Linear autoregressive model (AR):

Et = estimated error at time t between a 
parent soil moisture and the reference
Et-i = historical error value at the lagged i hrs, 
Φi = corresponding coefficient for Et-I

εt = white noise.
p = order of AR model. Forecast based on 
past p-hindcasts

Here Selected AR(12)

( )  = + −1 21merged w w

 − 
=
 + −  

2
2 1 2

2 2
1 2 1 22

w

−
=

=  + 
1

.E
p

t i t i t
i

E



2.3. General Results

Tonzi Ranch (Grassland)

Weighting
method

Wetness
conditions

R RMSE Bias KGE

Nonlinear

Driest (Q1) 0.91 0.099 0.071 0.43

Mod. Dry (Q2) 0.91 0.118 0.090 0.31

Mod. Wet (Q3) 0.91 0.067 0.039 0.63

Wettest (Q4) 0.92 0.039 -0.016 0.74

Kendall (Shrubland)

Weighting
method

Wetness
conditions

R RMSE Bias KGE

Nonlinear

Driest (Q1) 0.79 0.033 0.011 0.75

Mod. Dry (Q2) 0.79 0.049 0.034 0.63

Mod. Wet (Q3) 0.79 0.036 0.016 0.73

Wettest (Q4) 0.79 0.032 0.010 0.75

SM-FC (Mixed Forest)

Weighting
method

Wetness
conditions

R RMSE Bias KGE

Nonlinear

Driest (Q1) 0.77 0.099 0.090 0.54

Mod. Dry (Q2) 0.77 0.079 0.070 0.61

Mod. Wet (Q3) 0.76 0.032 0.009 0.75

Wettest (Q4) 0.76 0.031 0.007 0.75

• Calibration considering wettest conditions mostly generate the
best cosmic-ray soil moisture products.

• Relatively dry soil conditions generate the worst performance due
to the change in aboveground hydrogen pools, especially the litter
layer, which is less dominant under drier conditions.

Results



2.3. General Results

Sites Tonzi Ranch (Grassland) Kendall (Shrubland) SM-FC (Mixed Forest)

SM
product

Cosmic ray 
SM

Weighted
SM

Cosmic-ray 
SM

Weighted
SM

Cosmic-ray 
SM

Weighted
SM

Mean 0.149 0.156 0.125 0.115 0.237 0.230

CV 0.58 0.47 0.40 0.36 0.19 0.18

Calibration 
conditions

Wettest (Q4) Wettest (Q4) Wettest (Q4)

N0 1358 3929 1356

R 0.92 0.79 0.76

RMSE 0.039 0.032 0.031

Bias -0.016 0.010 0.007

KGE 0.74 0.75 0.75

• Highest correlation (R value) in grassland, followed by shrubland and mixed forest. It is due to low
aboveground and belowground biomass accumulation grasses, revealing that cosmic-ray neutron
signal is not much affected by other hydrogen sources signal variation (mostly vegetation).

• Highest variation (CV value) for both neutron intensity and soil moisture in grassland, followed
by shrubland and mixed forest. It is due to low canopy density of grasses cannot intercept much
rainfall water, leading to the high temporal variation directly linked to rainfall variation, compared
to forest, where rainfall water is mostly intercepted by canopy.

• The KGE values are almost similar over 3 vegetation covers (around 0.75) => similar efficiency of
calibration method over vegetated areas

Reference: Nguyen, H. H., Kim, H., & Choi, M. (2017). Evaluation of the soil water content using cosmic-ray neutron 

probe in a heterogeneous monsoon climate-dominated region. Advances in Water Resources, 108, 125-138.



2.3. General Results

Temporal Stability Analysis applied for the 
selected RZSM

Rank of 
small ITS

FDR stations

Tonzi Ranch Kendall SM-FC

1 Node 417 Node 1402 FDR 08

2 Node 401 Node 1401 FDR 01

3 Node 418 CRNP FDR 06

4 Node 416 Node 1400 FDR 03

5 Node 412 Node 1406 FDR 10

6 Node 415 Node 1405 FDR 09

7 Node 403 Node 1403 CRNP

8 CRNP FDR 02

9 FDR 07

10 FDR 05

• For 3 sites, the CRNP have higher ITS values -
> not stable at RZ layer -> cannot represent
field-scale RZSM



2.3. General Results

Tonzi Ranch 
(grassland)

Kendall 
(shrubland)

SM-FC
(mixed forest)

P1 P2 P1 P2 P1 P2

Reference RZSM CV (RZSM) 0.336 0.307 0.161

Merging 
framework

Weight (w) 0.11 0.19 0.37 0.41 0.24 0.06

Mean w 0.15 0.39 0.15

R (RZSM) 0.97 0.85 0.88

CV (RZSM) 0.331 0.344 0.123

Exponential 
Filter

Topt (hrs) 1 4.6 100 100 2 1.8

Mean Topt 2.8 100 1.9

R (RZSM) 0.92 0.64 0.82

CV (RZSM) 0.242 0.294 0.095

• Highest variation (CV) for Reference RZSM in grassland,
followed by shrubland and mixed forest. It is due to (1) the
highest CV in grassland SSM (mentioned in Chapter 1) and
(2) the grasses have higher root water uptake rate compared
to forest tree -> consume more water at root zone layer

• Merged RZSM have higher variation than Ex. Filtered RZSM
but close to Reference RZSM variation. Ex. Filter fail to
estimate T in Kendall site -> limitation of Ex. Filter

• The weight (w) depends on soil wetness conditions. Dry
conditions -> deeper CRNP penetration depth -> more CRNP
contribution -> more weight added to CRNP-SSM and vice
versa



2.3. General Results

Sites Products R RMSE Bias KGE

Tonzi Ranch 
(TR)

Grassland

Cosmic-ray SM (COS) 0.92 0.062 -0.040 0.23

Ancillary RZSM (TSL) 0.97 0.033 0.030 0.82

Merged RZSM (MERGE) 0.97 0.015 -0.004 0.97

Ex Filtered RZSM (EF) 0.92 0.041 -0.024 0.68

Kendall 
(KD)

Shrubland

Cosmic-ray SM (COS) 0.53 0.055 -0.027 0.41

Ancillary RZSM (TSL) 0.79 0.034 0.007 0.76

Merged RZSM (MERGE) 0.86 0.024 0.000 0.76

Ex Filtered RZSM (EF) 0.64 0.042 -0.019 0.62

SM-FC 
(SMFC)

Mixed Forest

Cosmic-ray SM (COS) 0.81 0.027 -0.006 0.73

Ancillary RZSM (TSL) 0.86 0.067 -0.063 0.36

Merged RZSM (MERGE) 0.88 0.018 0.000 0.88

Ex Filtered RZSM (EF) 0.82 0.024 -0.003 0.55

• For all three vegetation covers, the merged RZSM outperformed 2 parent products (Cosmic-ray SM 
and Time stable RZSM) and Exponentially Filtered RZSM -> robust for application in most 
vegetation covers

• Lower performance of Cosmic-ray SM and Time stable location (TSL) for RZSM -> standalone use of 
CRNP and point-based TSL cannot fully represent field-scale RZSM.

• Lower performance of Exponential Filter -> limitation because 1 parameter (Topt) cannot fully 
interpret the physical processes controlling infiltrated water

• The quality of merged RZSM depends on the
quality of each parent product against
reference RZSM

• More weights were considered to added to a
better product (higher R and SDV-Normalized
SD close to 1)

Reference: Nguyen, H. H., Jeong, J., & Choi, M. (2019). Extension of cosmic-ray neutron probe measurement depth for improving 

field scale root-zone soil moisture estimation by coupling with representative in-situ sensors. Journal of Hydrology, 571, 679-696.



I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

3. Integration of CRNP and SAR Sentinel-1 for SM estimation over vegetation covers 



3.1. Study areas and Datasets

Veg. cover COSMOS Sites

CRO

Neb Field 3 NF3

York Irrigated Maize YIM

York Irrigated Soybean YIS

GRA

Marshall Colorado MSC

Fort Peck FP

Flag Wildfire FWF

OSH

Desert Chaparral UCI DCU

Lower Salt Creek LSC

Tower Ruin TWR

ENF

P301 P301

Flag Ponderosa Pine FPP

Manitou Forest Ground MFG

DBF

Daniel Forest DF

Havard Forest HVF

Shale Hills SH

Vegetation Cover

Cropland Grassland
Open 

Shrubland
Evergreen

Needleleaf Forest
Deciduous

Broadleaf Forest

CRO GRA OSH ENF DBF

Cosmic-ray 
Soil Moisture

• COSMOS Network (USA)
• 15 sites over 5 vegetation covers
• Level 3 Soil moisture data
• Study period: 1 year (2017)



3.1. Study areas and Datasets

SENTINEL-1

Sensor Type Active Microwave (SAR)

Band C-band (5.4 GHz)

Duration 2014 - present

Temporal Res. 6 – 12 days

Spatial Res. 20 m

Selected 
Specification

VV + VH polarization,
Level1 GRD, IW mode

Target Spatial Res. 500 m

Target Period 1 year (2017)

SAR Sentinel-1
Backscattering Coefficient (σ°)



3.2. Methodology

For φ is a generators with inverse (φ)-1 completely
monotonic on [0,∞)[0,∞), then the bivariate
Archimedean copula can be defined as:

( ) ( )( )1( , )C u v u v−=  +

Bivariate Archimedean Copulas

Trying to fit all candidate 
copulas and their 
parameter range

Best-fit Copula Selection

Determining optimal 
parameter θ for all 
candidate copulas

using 
Maximum Likelihoods

Selecting best-fit copula 
among candidate copulas

using 
Goodness-of-Fit Tests
(Anderson-Darling/

Kolmogorov-Smirnov/
Cramer-von Mises

Trying to fit all candidate 
distributions and 

parameters

Determining optimal
parameters for all 

candidate distributions

using 
Maximum Likelihoods

using 
Goodness-of-Fit Tests

Selecting best-fit 
marginal distribution

Dependence Structure-based 
Copula Selection

Marginal Distribution Selection 
for each Variable

2

1

❖ Sklar’s Theorem
• If random variables x1,…,xn follow arbitrary marginal

distributions F1(x1),…,Fn(xn), respectively, there then exists a
copula, C, that combines these marginal distribution
functions to give a joint distribution function, F(x1, …, xn):

• A copula is defined as a joint distribution function on the n-
dimensional unit cube with all marginal distributions are
uniform on [0, 1]. Formally: C:[0, 1]n -> [0, 1]

❖ Advantages:
Separate (1) Distribution Analysis & (2) Dependence Analysis
• Each variable can be modelled by its arbitrary marginal

distribution => strengthen the nature of variable data
• Each dependence structure can be modelled by different

copula

Copulas

The conditional distribution
(Cu2|u1) of variable U2 at u2 given
variable U1 = u1 and a copula C12

that joint two variables U1 and
U2:

Conditional Copulas

12 1 2

2 1
1

|

( , )
=


u u

C u u
C

u



3.2. Methodology

• Allow modelling high-dimensional multivariate dependence structures
(for more than 2 variables)

• Enable the flexibility in choosing copulas

Vine Copula

❖ Fitting ACs to each bivariate copula:

❖ Computing conditional copula:

❖ Backward simulation of soil moisture (Mv):

D-Vine Copula Quantile Regression 
(DVQR)



3.3. General results

• the highest correlation values of three dependence pairs were generally obtained
in the two herbaceous areas (CRO and GRA) compared to the woody regions
(OSH, ENF and DBF)

• correlation values decreased with increasing vegetation density
-> attenuation effects of dense and complex vegetation on radar backscatter signal
(C-band SAR signal cannot penetrate the densely forested canopies)



3.3. General results

Vegetation 
covers

D-Vine Copula

Type AC θ

CRO

CVVVH G 3.43

CVHMV F 6.12

CVVMv|VH F 1.00

GRA

CVVVH F 13.06

CVHMV G 1.77

CVVMv|VH F 2.76

OSH

CVVVH G 1.71

CVHMV F 2.08

CVVMv|VH A 0.93

ENF

CVVVH G 1.89

CVHMV F 3.18

CVVMv|VH G 1.60

DBF

CVVVH G 1.87

CVHMV J 1.37

CVVMv|VH C 0.22

• Interdependence structures among variables can
be well captured and simulated by the D-Vine
Copula

• The interdependence structures over most of the
vegetation covers are nonlinear and asymmetric



3.3. General results

• Relative average deviation amplitude:

where N is the sample size, qi
u and qi

l are upper (q = 95%) and
lower (q = 5%) prediction bounds at the ith observation,
respectively; Mvi is the ith observed CRSM anomaly.
• Higher τ and R, lower RMSE, Bias and RDA can be regarded as a

superior product

• The superior performances obtained with the DVQR compared
with the MLQR considering all evaluation metrics in most VCs ->
robustness of the DVQR for capturing highly nonlinear
dependence structures among variables

• Over VCs, superior performance was generally obtained at low-
canopy herbaceous regions, especially grasslands and croplands,
according to the high correlations between each pairs of
variables.



3.3. General results

Vegetation 
covers

Sites

Deterministic evaluation Probabilistic evaluation

τ R
RMSE

(m3m-3)
Bias

(m3m-3)
RDA

CRO

NF3 0.56 0.69 0.050 0.004 0.133

YIM 0.66 0.82 0.028 -0.005 0.084

YIS 0.53 0.69 0.041 -0.003 0.124

GRA

FP 0.36 0.66 0.054 -0.031 0.272

FWF 0.57 0.68 0.074 0.048 0.488

MSC 0.22 0.50 0.028 -0.006 0.227

OSH

DCU 0.46 0.73 0.039 0.004 1.447

LSC 0.41 0.52 0.038 -0.021 0.702

TWR 0.32 0.44 0.030 -0.002 0.773

ENF

FPP 0.31 0.22 0.092 -0.021 0.495

MFG 0.33 0.40 0.043 -0.021 0.270

DF 0.34 0.46 0.354 0.227 1.803

DBF

HVF 0.10 0.27 0.076 0.001 0.158

MZ 0.42 0.55 0.047 -0.011 0.168

SH 0.07 0.18 0.027 -0.006 0.109

Reference: Nguyen, H. H., Cho, S., Jeong, J., & Choi, M. (2021). A D-vine copula quantile regression 

approach for soil moisture retrieval from dual polarimetric SAR Sentinel-1 over vegetated terrains. Remote 

Sensing of Environment, 255, 112283.



I. INTEGRATION OF NOVEL FIELD-SCALE SOIL MOISTURE OBSERVATION SYSTEMS

4. Conclusions 



4. Conclusions

• Calibration using wettest conditions can generate reasonable cosmic-ray soil moisture products.

• The merging framework combined CRNP and in-situ soil moisture measurements by providing the weight considering the CRNP penetration

depth. When the CRNP penetration depth is shallower than RZSM depth, less weight is given to CRNP and more weight is provided to

representative point measurement.

• The merging framework outperformed 2 original products and exponential filter, indicating that independent uses of both CRNP and in-situ

sensor cannot fully represent field-scale RZSM.

• In root-zone layer, vegetation type and root water uptake is the major factors controlling the temporal variation of merged RZSM, which

can be partly revealed through the merging framework procedure

• Radar backscatter is more sensitive to soil moisture over low-canopy herbaceous areas rather than dense canopy woodland areas, leading

to superior performances of SAR-based soil moisture retrieval at low-canopy regions

• Vegetation is the major factor controlling spatio-temporal variation of soil moisture -> needs to be considered carefully before integrating

different soil moisture observation systems
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1. The needs for data assimilation and Artificial Intelligence 



1.1. The need for data assimilation

Rain gauges Weather radars Satellite remote sensing

❖ Advantages:
• High temporal resolution (1 min.)
• Most accurate observation
❖ Disadvantages:
• Point-scale measurement (low 

spatial coverage)
• Errors due to external sources 

(winds, high rainfall intensity…)

❖ Advantages:
• Large scale observation (high spatial 

coverage)
❖ Disadvantages:
• Lower temporal resolution (30 

min.-1 day)
• Coarse spatial resolution
• Require rain gauge network and 

radar data for downscaling and 
correction

❖ Advantages:
• High temporal resolution (5-15 

min.)
• Good spatial coverage
❖ Disadvantages:
• High errors
• Require rain gauges data for 

calibration and correction



1.2. The need for Artificial Intelligence

Precipitation data 
from different 

observation 
systems

Automated Data 
Assimilation

Data updated and 
stored in a 
Database

Applications

• Rain gauges
• Weather radars
• Satellites

• Embedded Devices & 
Hardwares

• Decision-making
• Forecasting
• Natural Disasters 

Monitoring

Automation
Real-time/ Near 

Real-time Processing
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2. What we are working on 



2.1. Roadmap

Current work



2.2. Current work

• The datasets within a fixed moving time window n (t-n, …, t-1) can be used as 

training datasets for decision at measurement time t

• After measurement at time t was corrected, the corrected value can be continuously 

used as training datasets (update training data) for decision at measurement time t+1

• This procedure will be iteratively processed whenever a new measurement comes.

Real-time 

Automated 

Quality 

Control

Automated Classification 

of error sources 

(malfunction error, wind-

induced error, high rainfall 

intensity error, snow 

error…) and

Correction Errors

-> require supervised 

Machine Learning (ML) 

models for both 

Classification and 

Regression

Real-time Processing

-> require reasonable 

accuracy and easily 

adaptive to changes with 

low computational cost 

(fast processing)
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